
372 —Fall 2005 — 9

CSc 372

Comparative Programming
Languages

9 : Haskell — Curried Functions

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 9

Declaring Infix Functions

Sometimes it is more natural to use an infix notation for
a function application, rather than the normal prefix one:

5 + 6 (infix)
(+) 5 6 (prefix)

Haskell predeclares some infix operators in the
standard prelude, such as those for arithmetic.
For each operator we need to specify its precedence
and associativity. The higher precedence of an
operator, the stronger it binds (attracts) its arguments:
hence:

3 + 5*4 ≡ 3 + (5*4)
3 + 5*4 6≡ (3 + 5) * 4

[2]

372 —Fall 2005 — 9

Declaring Infix Functions. . .

The associativity of an operator describes how it binds
when combined with operators of equal precedence.
So, is
5-3+9 ≡ (5-3)+9 = 11

OR
5-3+9 ≡ 5-(3+9) = -7

The answer is that + and - associate to the left, i.e.
parentheses are inserted from the left.

Some operators are right associative: 5ˆ3ˆ2 ≡
5ˆ(3ˆ2)

Some operators have free (or no) associativity.
Combining operators with free associativity is an error:
5 == 4 < 3 ⇒ ERROR

[3] 372 —Fall 2005 — 9

Declaring Infix Functions. . .

The syntax for declaring operators:
infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.

From the standard prelude:
infixl 7 *
infix 7 /, ‘div‘, ‘rem‘, ‘mod‘
infix 4 ==, /=, <, <=, >=, >

An infix function can be used in a prefix function
application, by including it in parenthesis. Example:

? (+) 5 ((*) 6 4)
29

[4]

collberg+372@gmail.com


372 —Fall 2005 — 9

Multi-Argument Functions

[5] 372 —Fall 2005 — 9

Multi-Argument Functions

Haskell only supports one-argument functions.

An n-argument function f(a1, · · · , an) is constructed in
either of two ways:
1. By making the one input argument to f a tuple

holding the n arguments.
2. By letting f “consume” one argument at a time. This

is called currying.

Tuple Currying
add :: (Int,Int)->Int
add (a, b) = a + b

add :: Int->Int->Int
add a b = a + b

[6]

372 —Fall 2005 — 9

Currying

Currying is the preferred way of constructing
multi-argument functions.

The main advantage of currying is that it allows us to
define specialized versions of an existing function.

A function is specialized by supplying values for one or
more (but not all) of its arguments.

Let’s look at Haskell’s plus operator (+) . It has the type

(+) :: Int -> (Int -> Int) .

If we give two arguments to (+) it will return an Int :
(+) 5 3 ⇒ 8

[7] 372 —Fall 2005 — 9

Currying. . .

If we just give one argument (5) to (+) it will instead
return a function which “adds 5 to things”. The type of
this specialized version of (+) is Int -> Int .

Internally, Haskell constructs an intermediate –
specialized – function:
add5 :: Int -> Int
add5 a = 5 + a

Hence, (+) 5 3 is evaluated in two steps. First (+) 5
is evaluated. It returns a function which
adds 5 to its argument . We apply the second argument
3 to this new function, and the result 8 is returned.

[8]



372 —Fall 2005 — 9

Currying. . .

To summarize, Haskell only supports one-argument
functions. Multi-argument functions are constructed by
successive application of arguments, one at a time.

Currying is named after logician Haskell B. Curry
(1900-1982) who popularized it. It was invented by
Schönfinkel in 1924. Schönfinkeling doesn’t sound too
good...
Note: Function application (f x ) has higher
precedence (10) than any other operator. Example:
f 5 + 1 ⇔ (f 5) + 1
f 5 6 ⇔ (f 5) 6

[9] 372 —Fall 2005 — 9

Currying Example

Let’s see what happens when we evaluate f 3 4 5 ,
where f is a 3-argument function that returns the sum
of its arguments.

f :: Int -> (Int -> (Int -> Int))
f x y z = x + y + z

f 3 4 5 ≡ ((f 3) 4) 5

[10]

372 —Fall 2005 — 9

Currying Example. . .

(f 3) returns a function f’ y z (f’ is a specialization
of f ) that adds 3 to its next two arguments.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

f’ :: Int -> (Int -> Int)
f’ y z = 3 + y + z

[11] 372 —Fall 2005 — 9

Currying Example. . .

(f’ 4) (≡ (f 3) 4 ) returns a function f’’z (f’’ is a
specialization of f’ ) that adds (3+4) to its argument.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5
⇒ f’’ 5

f’’ :: Int -> Int
f’’ z = 3 + 4 + z

Finally, we can apply f’’ to the last argument (5) and
get the result:

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5
⇒ f’’ 5 ⇒ 3+4+5 ⇒ 12

[12]



372 —Fall 2005 — 9

Currying Example

The Combinatorial Function:
The combinatorial function

(

n

r

)

“n choose r”, computes
the number of ways to pick r objects from n.

(

n

r

)

=
n!

r! ∗ (n − r)!

In Haskell:
comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))

? comb 5 3
10

[13] 372 —Fall 2005 — 9

Currying Example. . .

comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))
comb 5 3 ⇒ (comb 5) 3 ⇒

comb5 3 ⇒
120 / (fact 3 * (fact 5-3)) ⇒
120 / (6 * (fact 5-3)) ⇒
120 / (6 * fact 2) ⇒
120 / (6 * 2) ⇒
120 / 12 ⇒
10

comb5 r = 120 / (fact r * fact(5-r))

comb5 is the result of partially applying comb to its first
argument.

[14]

372 —Fall 2005 — 9

Associativity

Function application is left -associative:
f a b = (f a) b f a b 6= f (a b)

The function space symbol ‘->’ is right -associative:

a -> b -> c = a -> (b -> c)
a -> b -> c 6= (a -> b) -> c

f takes an Int as argument and returns a function of
type Int -> Int . g takes a function of type Int ->
Int as argument and returns an Int :
f’ :: Int -> (Int -> Int)

m
f :: Int -> Int -> Int

6m
g :: (Int -> Int) -> Int

[15] 372 —Fall 2005 — 9

What’s the Type, Mr. Wolf?

If the type of a function f is
t 1 -> t 2 -> · · · -> t n -> t

and f is applied to arguments
e1::t 1, e 2::t 2, · · · , e k::t k,

and k ≤ n

then the result type is given by cancelling the types
t 1 · · · t k:
6 t 1 -> 6 t 2 -> · · · -> 6 t k -> t k+1 -> · · · -> t n -> t

Hence, f e 1 e2 · · · ek returns an object of type
t k+1 -> · · · -> t n -> t .

This is called the Rule of Cancellation.

[16]



372 —Fall 2005 — 9

Homework

Define an operator $$ so that x $$ xs returns True if
x is an element in xs , and False otherwise.

Example:
? 4 $$ [1,2,5,6,4,7]

True

? 4 $$ [1,2,3,5]
False

? 4 $$ []
False

[17]


	Declaring Infix Functions
	Declaring Infix Functionsldots 
	Declaring Infix Functionsldots 
	Multi-Argument Functions
	Multi-Argument Functions
	Currying
	Curryingldots 
	Curryingldots 
	Currying Example
	Currying Exampleldots 
	Currying Exampleldots 
	Currying Example
	Currying Exampleldots 
	Associativity
	What's the Type, Mr. Wolf?
	Homework

