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1 Introduction

The purpose of this assignment is to get improve our skills writing Haskell functions over lists. For the
purposes of this assignment, don’t use any of the higher-order built-in functions such as map, foldr, etc. —
I want you to write all functions “from scratch”!

Whenever possible, use Haskell’s pattern syntax, or guard syntax.

You may freely introduce auxiliary functions if that makes your program cleaner. Also, feel free to introduce
local definitions (where-clauses) to make your code easier to read.

You will be graded primarily on correctness and style, not on the execution efficiency of your code.

Functions written for one problem may be freely used in subsequent problems. In fact, this is encouraged!

All functions must be commented.

2 Grading Problems

1. The final grade assignment for a student in this class with a total score of t and final exam score of f
is given by the formula [10 points]

grade =































E if f < 50






















A if t ∈ [90, 100]
B if t ∈ [80, 89]
C if t ∈ [70, 79]
D if t ∈ [60, 69]
E if t < 60

otherwise

Code this formula in Haskell:

grade :: Float -> Float -> Char

grade f t = ...

> grade 45.0 85.0

’E’

> grade 90.0 85.0

’B’

> grade 90.0 105.0

program error: illegal score
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> grade (-5.0) 99.0

Program error: illegal score

2. Write a function member x ys which returns True if x is an element of ys, False otherwise. [10 points]

member :: Float -> [Float]-> Bool

member x xs = ...

> member 4 [1,2,3]

False

> member 4 [1,2,3,4.0,5]

True

3. Write a function maxl xs that generates an error "empty list" if xs==[] and otherwise returns the
largest element of xs: [10 points]

maxl :: [Float] -> Float

maxl xs = ...

> maxl [2,3,4,5,1,2]

5.0

> maxl []

Program error: empty list

4. Write a function mull xs m which returns a new list containing the elements of xs multiplied by m:
[10 points]

mull ::[Float] -> Float -> [Float]

mull xs x = ...

> mull [1,2,3,4,5] 0.0

[0.0,0.0,0.0,0.0,0.0]

> mull [1,2,3,4,5] 2

[2.0,4.0,6.0,8.0,10.0]

5. Write a function setsub xs ys that takes two integer lists xs and ys as input, both lists representing
sets. In other words, xs and ys are unsorted lists that contain no duplicate elements. setsub xs ys

returns xs-ys, i.e. the list containing the elements in xs that are not in ys: [10 points]

setsub :: [Float] -> [Float] -> [Float]

setsub xs ys = ...

> setsub [1,2,3] []

[1.0,2.0,3.0]

> setsub [1,2,3] [3]

[1.0,2.0]

> setsub [1,2,3] [1,2,3]

[]
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> setsub [] [1,2,3]

[]

> setsub [] []

[]

6. In computing the grades for this class, each individual score (final, midterm, quizzes, assignments) will
be curved by multiplying each score by 100.0/2nd highest class score. [15 points]

This can be computed by the formula

min(100, (100.0/ max(x − max(x)))s)

where - is set-subtraction, x is the set of grades, and s is the score of a particular student.

Use maxl, mull, and setsub from the problems above to write a function curve xs that scales the
scores in xs.

For example, assume the following final exam scores:

34 45 66 88 98

After the curve has been applied, the scores will be

38.6 51.1 75 100 100

Note that no score can be higher than 100.0.

curve :: [Float] -> [Float]

curve xs = ...

> curve [34,45,66,88,98]

[38.63636,51.13636,75.0,100.0,100.0]

7. Define a recursive function histogram L which takes a list of grades as input (pairs of (final,total))
and returns a string which is a histogram of the grades. Example: [15 points]

> putStr (histogram [(60,90),(50,38),(100,100),(100,100),(34,80),(92,92)])

’A’ *** (3)

’B’ * (1)

’C’ (0)

’D’ (0)

’E’ ** (2)

putStr prints out a string on the console. You may need to use the built-in show n function, which
converts a number/character/etc. to a string:

> show 6

"6"

> show ’6’

"’6’"

> show 6.6

"6.6"

You will find that for a more complicated function like histogram you must break it up into several
smaller functions. For example, you could organize your program like this:
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-- Return the number of students who got a particular

-- grade. For example,

-- > grades [(60,90),(50,38),(100,100),(100,100),(34,80),(92,92)] ’A’

-- 3

grades :: [(Float,Float)] -> Char -> Int

grades ((f,t):xs) g = ...

-- Helper function for histogram. The first argument is

-- the list of grades that we are going to print out

-- the histogram for.

hist :: [Char] -> [(Float,Float)] -> String

hist (g:gs) ft = ...

-- The main function to print out a histogram.

histogram :: [(Float,Float)] -> String

histogram ft = hist [’A’,’B’,’C’,’D’,’E’] ft

-- Generate a string consisting of n copies of c

stringDup Int -> String -> String

stringDup n c = ..

3 Computing Primes

Compute lists of prime numbers, using a Eratosthenes’ sieve. [20 points]

The method is as follows:

1. start with a list of numbers beginning with 2, for example [2,3,4,5,6,7,8,9,10].

2. The first number in the list is prime. Remove all its multiples. In this case we get [3,5,7,9].

3. Repeat the previous step: 3 is prime, and after ‘sieving’ out the multiples we are left with [5,7].

4. Repeat the step again: 5 is prime, and sieving leaves [7].

5. Do it again: 7 is prime, and sieving leaves [].

6. When no numbers remain, we’ve found all the primes in the given range.

Define a function sieve xs which implements this algorithm, such that sieve [2..10] = [2,3,5,7].

Use the function

relprime p n = n ‘mod‘ p > 0

to test if one number is a multiple of another.

You may find it helpful to first implement a function siever n xs that returns the elements of xs that are
not multiples of n.

Examples:
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> siever 2 [3..10]

[3,5,7,9]

> sieve [2..10]

[2,3,5,7]

> sieve [2..20]

[2,3,5,7,11,13,17,19]

> sieve [2..]

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,

71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,

149,151,157,163,167,173,179,181,191,193^C{Interrupted!}

4 Submission and Assessment

The deadline for this assignment is noon, Fri Sep 23. It is worth 7% of your final grade.

You should submit the assignment electronically using the Unix command

turnin cs372.2 ass2.hs .

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or the TA.
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