CSc 372
Compar ative Programming
L anguages

10 : Haskell — Polymorphic Functions

Christian Collberg

collberg+372@gmail.com

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 10 (1]

Polymor phic Functions

In many languages we can’t write a generic sort routine,
i.e. one that can sort arrays of integers as well as arrays
of reals:

procedure Sort (
var A @ array of <type>;
n : integer);

In Haskell (and many other FP languages) we can write
polymorphic (*many shapes”) functions.

Functions of polymorphic type are defined by using type
variables in the signature:
length :: [a] -> Int
length s = ...

372 —Fall 2005 — 10 [2]

Polymor phic Functions...

ngth is a function from lists of elements of some

Inspecified) type a, to integer. l.e. it doesn’t matter if
e're taking the length of a list of integers or a list of

als or strings, the algorithm is the same.

ngth [1,2,3] = 3 (list of Int)

ngth ["Hi ", "there", "I"] = 3 (list of String)
ngth "Hi!" = 3 (list of Char)

1 A P rl

Polymor phic Functions...

» We have already used a number of polymorphic
functions that are defined in the standard prelude.

head is a function from “lists-of-things” to “things”:
head :: [a] -> a

» tail s a function from lists of elements of some type ,
to a list of elements of the same type:

tail :: [a] -> [a]

® cons "(:)" takes two arguments: an element of
some type a and a list of elements of the same type. It
returns a list of elements of type a:

() = a->][a] -> [a]

g 1 A P ra1

collberg+372@gmail.com

Polymor phic Functions...

Note that head and tail always take a list as their
argument. tail always returns a list, but head can
return any type of object, including a list.

Note that it is because of Haskell's strong typing that we Context Predicates
can only create lists of the same type of element. If we
tried to do

? 5 [True]

the Haskell type checker would complain that we were
consing an Int onto a list of Bools, while the type of “.” is

¢ = a->1J[a] -> [a]
—Fall 2005 — 10 (5] 372 —Fall 2005 — 10 (6]
Theremdups Function Context Predicates
» Remember the remdups function: #® Obviously remdups should work for any list, not just
remdups [1] = [1] lists of Ints . Removing duplicates from a list of strings
remdups [1,2,1] = [1,2,1] is no different from removing duplicates from a list of
remdups [1,2,1,1,2] = [1,2,2] integers.
remdups [1,1,1,2] = [1,2,1] # However, there’s a complication. In order to remove
» Algorithm in Haskell: duplicates from a list, we must be able to compare list

elements for equality.

remdups :: [Int] -> [Int] :
remdups Xy:xs = #® The polymorphic type
if x ==y then [a] -> [a]
remdups Yy:Xs < case 1 is therefore a bit too general, since it would allow any
else type, even one for which equality is not defined.

X : remdups y:xs < case 2
remdups xs = XS < case 3

1 A P r1 g 1 A P rol

Context Predicates... Multiple Context Predicates

#® Haskell uses context predicates to restrict polymorphic # Consider the signum Function:
types: signum = (Num a, Ord a) => a -> Int
remdups :: Eq [a] => [a] -> [4] signum n | n == =0
| n>0 1

-1

signum can be applied to any type that is a number
(hence the Num apredicate), and for which the
relational operators are defined (Ord a).

Now, remdups may only be applied to list of elements | n<o

where the element type has == and \= defined.

® Eqis called a type class. Ord is another useful type
class. It is used to restrict the polymorphic type of a
function to types for which the relational operators (<,
<=, >, >=) have been defined. # Without these restrictions, the polymorphic signum
function could have been applied to lists, for example,
which would not have made sense.

—Fall 2005 — 10 (9] 372 —Fall 2005 — 10 [10]
Summary...
We want to define functions that are as reusable as
possible.
] 1. Polymophic functions are reusable because they can
Con C| usion be applied to arguments of different types.

2. Curried functions are reusable because they can be
specialized; i.e. from a curried function f we can
create a new function ' simply by “plugging in”
values for some of the arguments, and leaving
others undefined.

1 A P MM11 g 1 A P IEEs)]

Summary

A polymorphic function is defined using type variables
in the signature. A type variable can represent an
arbitrary type.

All occurences of a particular type variable appearing in
a type signature must represent the same type.

An identifier will be treated as an operator symbol if it is
enclosed in backquotes: ™"

An operator symbol can be treaded as an identifier by
enclosing it in parenthesis: (+) .

—Fall 2005 — 10 [13]

Homework

Define a polymorphic function dup x which returns a
tuple with the argument duplicated.

Example:
? dup 1
(1,1)

? dup "Hello, me again!"
("Hello, me again!",
"Hello, me again!")

? dup (dup 3.14)
((3.14,3.14), (3.14,3.14))

372 —Fall 2005 — 10 [14]

Homework

Define a polymorphic function copy n x which returns
a list of n copies of x.

Example:
? copy 5 "five"

["five","five","five",
"five","five"]

? copy 55
[5,5,5,5,5]

? copy 5 (dup 5)
[(5,5).(5,5).(5,5).(5,5).(5,5)]

— N = P~ o~ Mci

Homework

® Letf be afunction fromiInt tolInt ,i.e.

f o Int-> Int . Define a function total f x so
that total f is the function which at value n gives the
totalf 0O + f 1 + .- +fn.

Example:

double x = 2*x
pow2 X = X2
totDub = total double
totPow = total pow?2
? totDub 5

30
? totPow 5

55

N~ — N = o~ Moel

	Polymorphic Functions
	Polymorphic Functionsldots
	Polymorphic Functionsldots
	Polymorphic Functionsldots
	Context Predicates
	The {	t remdups} Function
	Context Predicates
	Context Predicatesldots
	Multiple Context Predicates
	Conclusion
	Summaryldots
	Summary
	Homework
	Homework
	Homework

