
372 —Fall 2005 — 10

CSc 372

Comparative Programming
Languages

10 : Haskell — Polymorphic Functions

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 10

Polymorphic Functions

In many languages we can’t write a generic sort routine,
i.e. one that can sort arrays of integers as well as arrays
of reals:

procedure Sort (
var A : array of <type>;
n : integer);

In Haskell (and many other FP languages) we can write
polymorphic (“many shapes”) functions.
Functions of polymorphic type are defined by using type
variables in the signature:
length :: [a] -> Int
length s = ...

[2]

372 —Fall 2005 — 10

Polymorphic Functions. . .

length is a function from lists of elements of some
(unspecified) type a, to integer. I.e. it doesn’t matter if
we’re taking the length of a list of integers or a list of
reals or strings, the algorithm is the same.
length [1,2,3] ⇒ 3 (list of Int)
length ["Hi ", "there", "!"] ⇒ 3 (list of String)
length "Hi!" ⇒ 3 (list of Char)

[3] 372 —Fall 2005 — 10

Polymorphic Functions. . .

We have already used a number of polymorphic
functions that are defined in the standard prelude.
head is a function from “lists-of-things” to “things”:

head :: [a] -> a

tail is a function from lists of elements of some type ,
to a list of elements of the same type:

tail :: [a] -> [a]

cons "(:)" takes two arguments: an element of
some type a and a list of elements of the same type. It
returns a list of elements of type a:

(:) :: a -> [a] -> [a]

[4]

collberg+372@gmail.com


372 —Fall 2005 — 10

Polymorphic Functions. . .

Note that head and tail always take a list as their
argument. tail always returns a list, but head can
return any type of object, including a list.
Note that it is because of Haskell’s strong typing that we
can only create lists of the same type of element. If we
tried to do

? 5 : [True]

the Haskell type checker would complain that we were
consing an Int onto a list of Bools, while the type of “:” is

(:) :: a -> [a] -> [a]

[5] 372 —Fall 2005 — 10

Context Predicates

[6]

372 —Fall 2005 — 10

The remdups Function

Remember the remdups function:
remdups [1] ⇒ [1]
remdups [1,2,1] ⇒ [1,2,1]
remdups [1,2,1,1,2] ⇒ [1,2,2]
remdups [1,1,1,2] ⇒ [1,2,1]

Algorithm in Haskell:

remdups :: [Int] -> [Int]
remdups x:y:xs =

if x == y then
remdups y:xs ⇐ case 1

else
x : remdups y:xs ⇐ case 2

remdups xs = xs ⇐ case 3

[7] 372 —Fall 2005 — 10

Context Predicates

Obviously remdups should work for any list, not just
lists of Ints . Removing duplicates from a list of strings
is no different from removing duplicates from a list of
integers.

However, there’s a complication. In order to remove
duplicates from a list, we must be able to compare list
elements for equality.

The polymorphic type
[a] -> [a]

is therefore a bit too general, since it would allow any
type, even one for which equality is not defined.

[8]



372 —Fall 2005 — 10

Context Predicates. . .

Haskell uses context predicates to restrict polymorphic
types:
remdups :: Eq [a] => [a] -> [a]

Now, remdups may only be applied to list of elements
where the element type has == and \= defined.

Eq is called a type class. Ord is another useful type
class. It is used to restrict the polymorphic type of a
function to types for which the relational operators (<,
<=, >, >= ) have been defined.

[9] 372 —Fall 2005 — 10

Multiple Context Predicates

Consider the signum Function:
signum :: (Num a, Ord a) => a -> Int
signum n | n == 0 = 0

| n > 0 = 1
| n < 0 = -1

signum can be applied to any type that is a number
(hence the Num apredicate), and for which the
relational operators are defined (Ord a ).

Without these restrictions, the polymorphic signum
function could have been applied to lists, for example,
which would not have made sense.

[10]

372 —Fall 2005 — 10

Conclusion

[11] 372 —Fall 2005 — 10

Summary. . .

We want to define functions that are as reusable as
possible.
1. Polymophic functions are reusable because they can

be applied to arguments of different types.
2. Curried functions are reusable because they can be

specialized; i.e. from a curried function f we can
create a new function f’ simply by “plugging in”
values for some of the arguments, and leaving
others undefined.

[12]



372 —Fall 2005 — 10

Summary

A polymorphic function is defined using type variables
in the signature. A type variable can represent an
arbitrary type.

All occurences of a particular type variable appearing in
a type signature must represent the same type.

An identifier will be treated as an operator symbol if it is
enclosed in backquotes: "‘" .

An operator symbol can be treaded as an identifier by
enclosing it in parenthesis: (+) .

[13] 372 —Fall 2005 — 10

Homework

Define a polymorphic function dup x which returns a
tuple with the argument duplicated.

Example:
? dup 1

(1,1)

? dup "Hello, me again!"
("Hello, me again!",
"Hello, me again!")

? dup (dup 3.14)
((3.14,3.14), (3.14,3.14))

[14]

372 —Fall 2005 — 10

Homework

Define a polymorphic function copy n x which returns
a list of n copies of x .

Example:
? copy 5 "five"

["five","five","five",
"five","five"]

? copy 5 5
[5,5,5,5,5]

? copy 5 (dup 5)
[(5,5),(5,5),(5,5),(5,5),(5,5)]

[15] 372 —Fall 2005 — 10

Homework

Let f be a function from Int to Int , i.e.
f :: Int -> Int . Define a function total f x so
that total f is the function which at value n gives the
total f 0 + f 1 + · · · + f n .

Example:
double x = 2*x
pow2 x = xˆ2
totDub = total double
totPow = total pow2
? totDub 5

30
? totPow 5

55

[16]


	Polymorphic Functions
	Polymorphic Functionsldots 
	Polymorphic Functionsldots 
	Polymorphic Functionsldots 
	Context Predicates
	The {	t remdups} Function
	Context Predicates
	Context Predicatesldots 
	Multiple Context Predicates
	Conclusion
	Summaryldots 
	Summary
	Homework
	Homework
	Homework

