<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	 So far, when we've gone through examples, I have said simply that when trying to satisfy a goal, Prolog searches for a matching rule or fact. What does this mean, to match? Prolog's matching operator or =. It tries to make its left and right hand sides the same, by assigning values to variables. Also, there's an implicit = between arguments when we try to match a query ?- f(x,y) to a rule f(A,B) :
—Fall 2005 — 19 [1]	372 — Fall 2005 — 19 [2]
Matching Examples	Matching Examples
<pre> The rule: deriv(U ^C, X, C * U ^L * DU) :- number(C), L is C - 1, deriv(U, X, DU). - deriv(x ^3, x, D). D = 1*3*x^2</pre>	<pre>deriv(U+V, X, DU + DV) :- deriv(U, X, DU), deriv(V, X, DV). ?- deriv(x^3 + x^2 + 1, x, D). D = 1*3*x^2+1*2*x^1+0 x ^3 + x^2 + 1 matches U + V</pre>

[3]

272 Fall 2005 40

[4]

Unification & Matching

Matching Algorithm

Matching – Examples

Can two terms A and F be "made identical," by		A	F	$A \equiv F$	variable subst.
assigning values to their variables?		а	а	yes	
Two terms A and F match if		а	b	no	
1. they are identical atoms		sin(X)	sin(a)	yes	$ heta = \{ X = a \}$
2. one or both are uninstantiated variables		sin(a)	sin(X)	yes	$ heta = \{ extsf{X=a}\}$
3. they are terms $A = f_A(a_1, \cdots, a_n)$ and		cos(X)	sin(a)	no	
$F = f_F(f_1, \cdots, f_m)$, and		sin(X)	sin(cos(a))	yes	$ heta = \{ X = \cos(a) \}$
(a) the arities are the same ($n = m$)					
(b) the functors are the same ($f_A = f_F$)					
(c) the arguments match ($a_i \equiv f_i$)					
—Fall 2005 — 19 [5]	372 —Fall 2005	5 — 19		[6]	

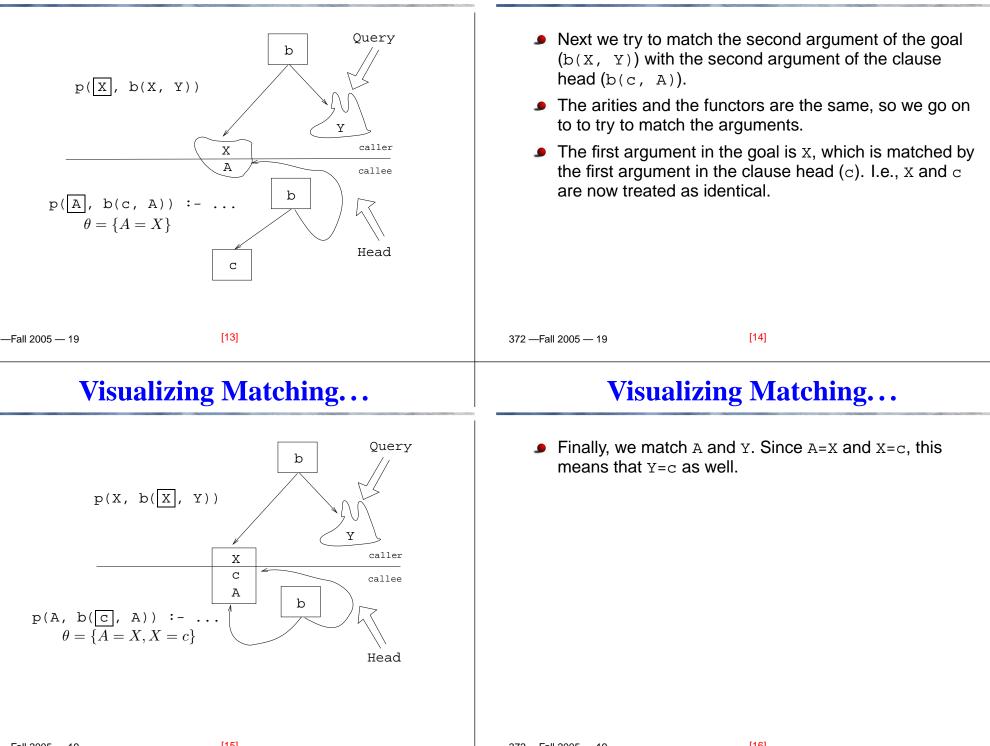
Matching – Examples...

A	F	$A \equiv F$	variable subst.
likes(c, X)	likes(a, X)	no	
likes(c, X)	likes(c, Y)	yes	$\theta = \{X{=}Y\}$
likes(X, X)	likes(c, Y)	yes	$ heta = \{ X=c, X=Y \}$
likes(X, X)	likes(c, _)	yes	$ heta = \{ extsf{X=c}, extsf{X=_47}\}$
likes(c, a(X))	likes(V, Z)	yes	$\theta = \{V=c,Z=a(X)\}$
likes(X, a(X))	likes(c, Z)	yes	$\theta = \big\{ X=c,Z=a(X) \big\}$

Matching Consequences

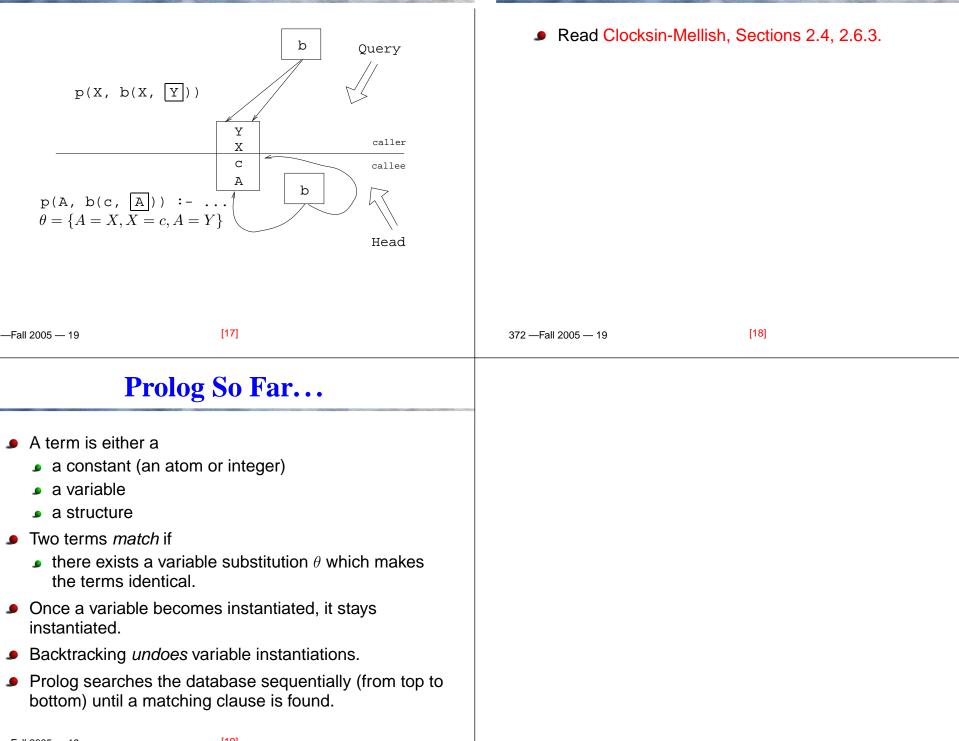
Consequences of Prolog Matching:

- An uninstantiated variable will match any object.
- An integer or atom will match only itself.
- When two uninstantiated variables match, they share:
 - When one is instantiated, so is the other (with the same value).
- Backtracking undoes all variable bindings.


Matching Algorithm	Visualizing Matching
<pre>UNC Unify (A, F: term) : BOOL; IF Is_Var(F) THEN Instantiate F to A ELSIF Is_Var(A) THEN Instantiate A to F ELSIF Arity(F)≠Arity(A) THEN RETURN FALSE ELSIF Functor(F)≠Functor(A) THEN RETURN FALSE ELSE FOR each argument i DO IF NOT Unify(A(i), F(i)) THEN RETURN FALSE RETURN TRUE;</pre>	 From <i>Prolog for Programmers</i>, Kluzniak & Szpakowicz, page 18. Assume that during the course of a program we attempt to match the goal p(X, b(X, Y)) with a clause <i>C</i>, whose head is p(X, b(X, Y)). First we'll compare the arity and name of the functors. For both the goal and the clause they are 2 and p, respectively.
—Fall 2005 — 19 [9]	372 — Fall 2005 — 19 [10]
Visualizing Matching	Visualizing Matching
$p(X, b(X, Y))$ x y $caller$ $p(A, b(c, A)) := \dots$ c k d	 The second step is to try to unify the first argument of the goal (x) with the first argument of the clause head (A). They are both variables, so that works OK. From now on A and x will be treated as identical (they are in the list of variable substitutions θ).
E 11 000E 10 [44]	

40

[4:0]


14.41

Visualizing Matching...

Visualizing Matching...

Visualizing Matching...

Readings and References