
372 —Fall 2005 — 28

CSc 372

Comparative Programming
Languages

28 : Icon — Introduction

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 28

Introduction

[2]

372 —Fall 2005 — 28

The Icon Language

Icon is a prototyping language that traces its ancestry
from Pascal and SNOBOL.

Icon is dynamically typed. It has generators, string
manipulation functions, coroutines, structured data
types (lists, tables, and sets), garbage collection, and
built-in graphics support.

Pick up implementations for Unix, Mac, PC, etc from
ftp.cs.arizona.edu.

With the implementation comes a huge library of useful
routines and programs.

Icon programs are usually interpreted, but there is also
a compiler that translates to C.

[3] 372 —Fall 2005 — 28

History

Defined by Ralph Griswold, Prof. Emeritus at the
University of Arizona.

Derived from SNOBOL (also by Griswold) and SL5
(Griswold and Dave Hansen).

Name comes from Iconoclast.

"The Collaborative International Dictionary of English v.0.48"

Iconoclast I*con"o*clast, n. Gr. e’ikw‘n image + ? to break:

cf. F. iconoclaste.

1. A breaker or destroyer of images or idols; a determined

enemy of idol worship.

2. One who exposes or destroys impositions or shams; one who

attacks cherished beliefs; a radical.

[4]

collberg+372@gmail.com

372 —Fall 2005 — 28

Running Icon

[5] 372 —Fall 2005 — 28

Icon Modules

An Icon program consists of a number of procedures
declared in one or more modules. Modules are
separately compiled.

Each program must have a procedure main that will be
called first when the program is started.

...

A.icn

end

procedure Y()

procedure X()

end

...

end

procedure Z()

B.icn

...

Z()

M.icn

link A, B

global r, t

procedure main ()

local s, t

X()

end

[6]

372 —Fall 2005 — 28

Compiling Icon Programs

Set these environment variables:

setenv IPATH /usr/local/lib/icon/lib

setenv LPATH /usr/local/lib/icon/include

setenv FPATH /usr/local/lib/icon/bin

To compile an Icon module M.icn do icont -c M.icn. This
generates two files M.u1 and M.u2.

To link an Icon program (where the main procedure is in the module
M.icn) do icont M.icn. This generates an executable file M.

You can pick up additional Icon programs and functions from
/usr/local/lib/icon/lib/bipl and
/usr/local/lib/icon/lib/gipl.

[7] 372 —Fall 2005 — 28

Procedure Declarations

A procedure has five parts: The heading, local
declarations, initializations, static declarations, and the
procedure body.

A variable that is declared static survives between
procedure invocations.

Statements in an initial clause are run the first time the
procedure is called.

global R, T
procedure name (arguments, extra[])

local x, y, z
static a, b, c
initial { ... }
<statements>

end
[8]

372 —Fall 2005 — 28

Interactive Icon

Normally we run Icon by saving the program in a file
and compiling it to bytecode using icont.

William Mitchell has written a program ie (Icon
Evaluator) that allows us to try out Icon expressions
interactively.

The source is here:
http://www.mitchellsoftwareengineering.com/icon/ie.icn

You can also run it directly on lectura:

> setenv IPATH ${IPATH}:/home/cs372/fall03/icon/lib

> /home/cs372/fall03/icon/ie

Icon Evaluator, Version 0.8.1, ? for help

][5+7;

r1 := 12 (integer)

[9] 372 —Fall 2005 — 28

Program Layout

Icon is expression-oriented — every program construct
returns a value.

Expressions can be separated by blank lines or
semicolons, or both.

These are equivalent:

write("hi"); write(5)

write("hi");
write(5)

write("hi")
write(5)

Icon programmers avoid using semicolons whenever
possible.

[10]

372 —Fall 2005 — 28

Program Layout. . .

Long lines can be broken after an operator:

x := something + something_else *
something_different

[11] 372 —Fall 2005 — 28

Preprocessor

There is a simple pre-processor that allows you to
define constants:

$define MaxVal 1000
...
if i > MaxVal then ...

[12]

http://www.mitchellsoftwareengineering.com/icon/ie.icn

372 —Fall 2005 — 28

Debugging Icon

[13] 372 —Fall 2005 — 28

Debugging Icon

Bad news: There is no Icon debugger. Good news: You
don’t need one!

Since the time for an edit-compile-link is so fast, you
can do your debugging using write statements.

SETENV TRACE=-1 or &trace:=-1 will trace function
calls.

[14]

372 —Fall 2005 — 28

Debugging Icon. . .

When a runtime error occurs, execution terminates, and
a traceback (a list of all active procedure calls) is
generated:

procedure Q(); x:=x+"hello"; end
procedure P(); Q(); end
procedure main(); P(); end

⇓
Run-time error 102
File s.icn; Line 7
numeric expected
Trace back:

main()
P() from line 3 in s.icn
Q() from line 2 in s.icn
{&null + "hello"} from line 1

[15] 372 —Fall 2005 — 28

Debugging Icon. . .

xdump will display any variable type:

link ximage
procedure main()

x := table(0); x[5]:="c"
xdump([99,set([3,4]),x])

end
⇓

L2 := list(3)
L2[1] := 99
L2[2] := S1 := set()

insert(S1,3)
insert(S1,4)

L2[3] := T1 := table(0)
T1[5] := "c"

[16]

372 —Fall 2005 — 28

Introductory Example

[17] 372 —Fall 2005 — 28

Soundex

When names are communicated by telephone, they are often

transcribed incorrectly.

Soundex is a system of encoding a name that will mitigate the

effects of transcription errors.

Convert all occurrences of A,E,H,I,O,

U,W,Y in other positions to "."

Assign the following numbers to the

remaining letters after the first:

[18]

372 —Fall 2005 — 28

Soundex. . .

B,F,P,V => 1 L => 4

C,G,J,K,Q,S,X,Z => 2 M,N => 5

D,T => 3 R => 6

procedure soundex(name)

local first, c, i

Convert to uppercase.

name := map(name, string(&lcase),string(&ucase))

Retain the first letter of the name

first := name[1]

name := map(name, "ABCDEFGHIJKLMNOPQRSTUVWXYZ",

".123.12..22455.12623.1.2.2")

[19] 372 —Fall 2005 — 28

Soundex. . .

If two or more letters with the same

code were adjacent in the original name,

omit all but the first

every c := !"123456" do

while i := find(c||c,name) do

name[i+:2] := c

name[1] := first

Now delete our place holder (’.’)

while i := upto(’.’,name) do name[i] := ""

return left(name,4,"0")

end

[20]

372 —Fall 2005 — 28

Soundex. . .

procedure main(args)

write(args[1] || " ==> " || soundex(args[1]))

end

[21] 372 —Fall 2005 — 28

Explanation

][name := "collberg";

][name := map(name, string(&lcase),string(&ucase));

r15 := "COLLBERG" (string)

][name := map(name, "ABCDEFGHIJKLMNOPQRSTUVWXYZ",

".123.12..22455.12623.1.2.2");

r16 := "2.441.62" (string)

][every c := !"123456" do write(c);

1

2

3

4

5

6

[22]

372 —Fall 2005 — 28

Explanation. . .

][while i := find("44",name) do name[i+:2] := "4";

][write(name);

2.41.62

][while i := upto(’.’,name) do name[i] := "";

][write(name);

24162

][left("C4162",4,"0");

r23 := "C416" (string)

[23] 372 —Fall 2005 — 28

Tracing Soundex

left(s1, i, s2) shift s1 to the left, append s2:s until position i

is reached.

Example

COLLBERG ⇒(code) "2.441.62" ⇒(remove duplicates)

"2.41.62" ⇒(restore first) "C.41.62" ⇒(delete ".")

"C4162" ⇒(truncate) "C416"

COLBERG ⇒(code) "2.41.62" ⇒(remove duplicates) "2.41.62"

⇒(restore first) "C.41.62" ⇒(delete ".") "C4162"

⇒(truncate) "C416"

[24]

372 —Fall 2005 — 28

Summary

[25] 372 —Fall 2005 — 28

Confused Student Email

Question I
HI Dr. Collberg: Is there any expression in ICON similar to
"&&" logical "AND" expression in PASCAL ? Or should I
just use:

If (true) then
if (true) then

expr1 & expr2 succeeds (and produces expr2) if both expr1
and expr2 succeed.

[26]

372 —Fall 2005 — 28

Confused Student Email. . .

Dear Dr. Christian:
I compile and run my program at home on my PC, transfer it
to the Unix machine at the department, and then it won’t
run! What’s wrong???
Sincerely,

Confused.
Dear Confused,
The .u1 and .u2 files are text files. Be sure to transfer
them so that the newline characters are properly converted.
Or, transfer the .icn file and recompile.

[27] 372 —Fall 2005 — 28

Confused Student Email. . .

Question VI
While doesn’t this work

every write(f2, read(f1))
while this does:

while write(f2, read(f1))
read is not a generator.

[28]

372 —Fall 2005 — 28

Confused Student Email. . .

What could cause machcode.icn to lose track of
subroutines in other files? My makefile is fine, because at
one moment machcode.icn is grabbing external routines
correctly then it starts randomly selecting routines to reject
(i.e. &null(variables).) It’s even rejected YOUR
Mcode := mcode Create()
the second line of the first procedure!!! And then, without
changing a single line of code above it, machcode will
accept it again and pick some other external routine to
complain about!

[29] 372 —Fall 2005 — 28

Confused Student Email. . .

Icon doesn’t have a module system. In other words, all
procedures are global. This is why all (most) my procedures
are prefixed by the module name. What could have
happened is that you’ve declared a global variable or record
or procedure whose name conflicts with one of my
procedures, elsewhere in the compiler. So, try to name all
your global procedures/variables/records with unique (i.e.
long) names.
Also, make sure that you get the case right;
mcode Create() is different from mcode create().

[30]

372 —Fall 2005 — 28

Readings

Read Christopher, Chapter 1. This is the
reference text I will mostly be refering to.

You can also read the corresponding sections in
Griswold and Griswold.

[31] 372 —Fall 2005 — 28

References

The Icon Programming Language, by Griswold and
Griswold. Prentice Hall. ISBN 0-13-447889-4.

The Icon Home Page: http://www.cs.arizona.edu/icon/

Thomas W Christopher - Icon Programming Language
Handbook,
http://www.tools-of-computing.com/tc/CS/iconprog.pdf

http://dmoz.org/Computers/Programming/Languages/Icon

http://www.nmt.edu/tcc/help/lang/icon/homepage.html

The string-scanning examples were taken from
http://www.cs.arizona.edu/icon/intro.htm and
http://www.nmt.edu/tcc/help/lang/icon.

Bill Mitchell’s Icon Evaluator:
http://www.mitchellsoftwareengineering.com/icon/ie.icn

[32]

http://www.cs.arizona.edu/icon/
http://www.tools-of-computing.com/tc/CS/iconprog.pdf
http://dmoz.org/Computers/Programming/Languages/Icon
http://www.nmt.edu/tcc/help/lang/icon/homepage.html
http://www.cs.arizona.edu/icon/intro.htm
http://www.nmt.edu/tcc/help/lang/icon
http://www.mitchellsoftwareengineering.com/icon/ie.icn

	Introduction
	The Icon Language
	History
	Running Icon
	Icon Modules
	Compiling Icon Programs
	Procedure Declarations
	Interactive Icon
	Program Layout
	Program Layoutldots
	Preprocessor
	Debugging Icon
	Debugging Icon
	Debugging Iconldots
	Debugging Iconldots
	Introductory Example
	Soundex
	Soundexldots
	Soundexldots
	Soundexldots
	Explanation
	Explanationldots
	Tracing Soundex
	Summary
	Confused Student Email
	Confused Student Emailldots
	Confused Student Emailldots
	Confused Student Emailldots
	Confused Student Emailldots
	Readings
	References

