CSc 372

Comparative Programming
Languages
30 : Icon — Control Structures

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 30 (1]

Success and Failure

372 —Fall 2005 — 30 [2]

Expressions

There are fundamental differences in the way Java, C,
etc. & lcon statements are executed:

1. lcon statements are expressions that return values.
2. Icon expression either succeed or fall.
Failure doesn’t necessarily mean that something has

gone wrong, rather, it means that there is no value to
return.

numeric("pi") fails because "pi" cannot be
converted to number.

— N = A~ 1l

Success and Failure

i+ j Succeeds and returns the value i + j.

i < 7 Succeeds if i < j, in which case j is returned. Fails
otherwise.

numeric(x) Converts x to a number.
numeric("3.14") Returns 3.14.
numeric("pi") Fails.

All Icon variables have a special null value initially.

N~ — N = A~ r1

collberg+372@gmail.com

Examples

- Examples...

[w = "hello world"; I x +vy;
r2 := "hello world" Run-time error 102
Il w[20]; offending value: &null
Failure I "hi" || w[20];
][numeric("55"); Failure
r4 .= 55 (integer)
[numeric("pi");
Failure
[x := 42;
[x + numeric("10");
r9 ;= 52 (integer)
[x + numeric("pi");
Failure
—Fall 2005 — 30 (5] 372 —Fall 2005 — 30 (6]
Comparisons Comparisons. ..

Comparisons in Icon succeed or fail:
» 1 < jsucceeds ifiis less than j and fails otherwise.
s If i < j succeeds then the expression returns j.

[i:=75
I[]:=6;
I[i<j

rié6 = 6
I[j<H
Failure

— N = A~ r-1

N~

I[max
I[max
r20
Il max;
r21 :
][max :
Failure
Il max;
r23 := 6
I[if min < j < max then
write("yes") else write("no");

5;
max < 6;
6

I
S o

ax < 3;

yes

Ifmin < | then the expression succeeds and
produces j which is then compared to max.

— N = A~ rol

Expressions

All Icon expressions return values.

Compund Expressions

Just like in C and Java, several expressions can be
aggregated using the syntax {ej,es, ..., en}.

I[res := if_mi"n <,,j < max _the"n #® Each expression is executed in turn.
write("yes") else write("no"); o
[res; » The value of the last expression is the result of the
r30 := "yes" compound.
I[x = 42; # Failure of one of the expression doesn’t make the
[x =5 +if 1 > 2 then 3; compund fail.
Failure
[x;
r39 = 42
[x =5 +if 2 > 1 then 3;
It x;
r41 := 8
—Fall 2005 — 30 [9] 372 —Fall 2005 — 30 [10]
Compund Expressions — Examples
I[{1;2};
r42 = 2
[{1>2;3};
r43 = 3 -
[x :=if 2>1 then {1; 3+4}; Repetltlon

I[X
ras = 7

— N = A~ MM11

N~

— N = A~ Mo

while

#® The while -expression has the syntax

while (exprl) do expr2

For as long as exprl succeeds, expr2 is evaluated.
#® The while -expression always fails.

I =0, s :="
while (i < 10) do
S ||:= i+=1 | ""

—Fall 2005 — 30 [13]

preak andpextw

® break and next behave asin C.

372 —Fall 2005 — 30 [14]

not

® not e succeeds and returns null
® not e fails if e succeeds.

[not (1>2);

r6l := &null
|[not (2>1);
Failure

— N = A~ Mci

i ——

if e fails.

&

N~

i —— == =

® ¢1&es succeeds if both e; and e; succeed, and the result
is the value of es.

® ¢ is evaluated first and if it succeeds, e is evaluated.
» |[f either of e; and e; falil, e;&e9 fails.

— N = A~ Moel

[1& 2

63 = 2
[1& 2 & 3;

64 = 3
[1&(@1>2);
Failure
[write(1) & (1 > 2);
1
Failure
[(1 > 2) & write(2);
Failure
—Fall 2005 — 30 [17]

procedure main()

S ="
while (line := read()) & (line == "end") do
S |:=""1 line
write(" >>> " || S)
end
> read
hello
world
end

>>> hello world

372 —Fall 2005 — 30 [18]

Testing for null

® /expr succeeds if expr isnull , and then returns

null

® \expr succeeds if expr is notnull , and then returns

expr .

® Think of “/e succeeds if e is null because the / falls

over, getting no support frome.”

— N = A~ Maol

==

Testing for null ...

N~

I x = &null;
1L /%

r4 = &null
I\
Failure
I Ix = 42,
I x;

7= 42
II /x = 10;
Failure
I x

r9 = 42 (integer)

— N = A~ mnl

=

Booleans

There is no boolean type in Icon, but you can use null
as False and any non-null value as True.

» if \x & \y then then functionsasif x and y
then would in other languages.

Goal-Directed Evaluation

Icon supports bounded backtracking within one
expression.

® Onceepinif e then... has generated a value, no
more values are generated.

#® Generating one pythagorean triangle:

[x =1
[y =1 .
: .) procedure main()
]4{2": &Yy then wite{42); if i == 1 to 100 & j := 1 to 100 &
[if X | \y then write(42): k := 110 100 & i'2 + j2 = K'2 then
42 write(i, v , K)
I[if W | \z then write(42); end
Failure > ovih
I[if \z | \x then write(42); pythagoras
42 345
—Fall 2005 — 30 [21] 372 —Fall 2005 — 30 [22]
until Fibonacci
& until e1 do ey behaves the same as while not procedure main()
(e1) do e, local i,]
If ¢; fails then e, gets evaluated. J' = 1
[x = 1; until i > 1000000 do {
I[until x > 10 do x +:= 1; ert_(i(l)_
Failure | _+_..—]
[write(x); =
11 }
end

— N = A~ Hnl

® x =2y swaps the two valuesin x andy.

N~ — N = A~ mal

repeat

® repeat ¢ evaluates e forever.

#® Use break orreturn to exit the loop.
Ni:=1

[repeat {i +:= 1; if i > 10 then break;};

[write(i);
11

—Fall 2005 — 30 [25]

case

case e of {
el : sl
e2 : s2

d.éfault : s3
}

Similar to repeated if-expression: if e===el then
sl else if e===e2 then s2 else... else s3

The default -part is optional. el, e2,... can be
arbitrary expressions of arbitrary type, not just scalar
constants as in C’s switch statement.

=== is the universal equality test. For two numbers it
does a numeric test, for two strings, a string test, for
other kinds of objects (tables, sets, lists) it checks that

272 _ra SR Ojects are the same phject.

Examples

][5 === 5;
r4 .= 5 (integer)

]["5" e "5";

r5 = "5" (string)
I[[1,2,3] === [1,2,3];
Failure
[x = [1,2,3];

][X === X;
r9 = L1:[1,2,3] (list)

— N = A~ 71

Summary

— N = A~ ol

Readings and References

= e e

Acknowledgments

= senre o e

Read Christopher, pp 28, 45--52 : # Some material on these slides has been modified from
William Mitchell’'s Icon notes:
http://www.cs.arizona.edu/classes/cs372/fall03/hand outs.html

® Some material on these slides has been modified from
Thomas W Christopher’s Icon Programming Language
Handbook,

http://www.tools-of-computing.com/tc/CS/iconprog.pd f.

—Fall 2005 — 30 [29] 372 —Fall 2005 — 30 [30]

http://www.cs.arizona.edu/classes/cs372/fall03/handouts.html
http://www.tools-of-computing.com/tc/CS/iconprog.pdf

	Success and Failure
	Expressions
	Success and Failure
	Examples
	Examplesldots
	Comparisons
	Comparisonsldots
	Expressions
	Compund Expressions
	Compund Expressions --- Examples
	Repetition
	{	t while}
	{	t break} and {	t next}
	{	t not}
	{	t &}
	{	t &}ldots
	{	t &}ldots
	Testing for {	t null}
	Testing for {	t null}ldots
	Booleans
	Goal-Directed Evaluation
	{	t until}
	Fibonacci
	{	t repeat}
	{	t case}
	Examples
	Summary
	Readings and References
	Acknowledgments

