
372 —Fall 2005 — 34

CSc 372

Comparative Programming
Languages

34 : Icon — String Scanning

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 34

String Parsing

[2]

372 —Fall 2005 — 34

find

find(x,S) generates all the positions in S where the
string x occurs.

][S := "hello world";
][.every find("l",S);

3
4
10

[3] 372 —Fall 2005 — 34

find . . .

Beware that when a string “changes”, there’s actually a
new string constructed.

][S := "axaxa";
][every i := find("x",S) do {

write(i); S[i]:="yy"; write(S)
};

2
ayyaxa
4
ayyyyxa

[4]

collberg+372@gmail.com

372 —Fall 2005 — 34

Removing Nested Comments

Idea: repeatedly remove any comments that don’t
contain any other comments.

procedure decomment(S);
while (1) do {

if f := find("/*",S) &
t := find("*/",S,f+2) &
not (find("/*",S,f+2) < t) &
not (find("*/",S,f+2) < t) then
S[f:t+2] := ""

else
break

}
return S;

end

[5] 372 —Fall 2005 — 34

Nested Comments. . .

procedure main()

write(decomment("/* hello world */"))

write("---")

write(decomment("foo /* hello world */ bar"))

write("---")

write(decomment("/* hello/* there */ world */"))

write("---")

write(decomment("foo /* hello/* there */ world */ bar"))

write("---")

write(decomment("foo /* hello */ there /* world */ bar"))

end

[6]

372 —Fall 2005 — 34

Nested Comments. . .

> icont comments.icn
> comments

foo bar

foo bar

foo there bar

[7] 372 —Fall 2005 — 34

csets

A cset is a basic Icon type that describes sets of
characters.

Csets are written as a string of characters between
single quotes.

Predefined csets:
&digits: digits between 0 to 9.
&letters: all letters.
&ascii: all ASCII characters
&lcase: lower case letters.
&ucase: upper case letters.

The normal set operations can be performed using ++
(union), ** (intersection), -- (set difference), and ˜
(complement).

[8]

372 —Fall 2005 — 34

csets . . .

A string that occurs in a context where a cset is
expected will be converted automatically.

][write(&letters);
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij...
][write(&ascii);

!"#$%&’()*+,-./0123456789:;<=>?@ABC...
][x := ’abc123’;
][x ** &letters;

r13 := ’abc’ (cset)
]["456" ++ x;

r14 := ’123456abc’ (cset)

[9] 372 —Fall 2005 — 34

upto

upto(x,S) generates all the positions in S where any
of the characters in the cset x occur.

][S := "hello world";
][.every upto(’l’,S);

3
4
10

][write(upto(’x’,S));
Failure
][every write(upto("l",S));
3
4
10

[10]

372 —Fall 2005 — 34

many

many(x,S) produces the position after the longest
initial substring of S containing only characters in the
cset x . many(x,S) fails if the first character of S isn’t in
x .

][S := "hello 42 world";
][write(many(’hel’,S));
5
][write(many(’xyz’,S));
Failure
][write(many(&letters,S));
6
][write(many(&letters++’ ’,S));
7
][write(many(’xyz’,"bbbxxxxccc"));
Failure [11] 372 —Fall 2005 — 34

any

any(x,S) produces 2 if the first character in S is in the
cset x , and fails otherwise.

][S := "hello world";
][write(any(’hxl’,S));
2
][write(any(’xl’,S));
Failure

[12]

372 —Fall 2005 — 34

match

match(x,S) succeeds if the string x is a prefix of S,
and fails otherwise.

On success, match(x,s) returns the position after x .

][S := "hello world";
][write(match("hell",S));
5
][write(match("ell",S));
Failure
][write(match("",S));
1
][write(match(S,S));
12

[13] 372 —Fall 2005 — 34

Removing Whitespace

Removing initial whitespace:

][S := " hello world";
][S[1:many(’ \t’,S)] := "";
][S;

r35 := "hello world"

[14]

372 —Fall 2005 — 34

String Scanning

[15] 372 —Fall 2005 — 34

String Scanning

The expression s ? e makes s the subject to which
string processing operations in e apply.

The program below prints 3, 13, and 23:

line := "a fish is a fish is a fish"
every line ? write(find("fish"))

[16]

372 —Fall 2005 — 34

String Scanning. . .

All the string manipulation functions above (match ,
many, etc.) can be used in string scanning.

When we initiate a string scanning expression s ? e ,
Icon sets a special variable &subject to s , and
another variable &pos (the current position) to 1.

match , many, etc. operate directly on &subject and
&pos .

Note that find gets its argument implicitly:

]["hi there" ? {write(&pos);write(&subject)};
1
hi there
]["hi there" ? {write(find("th"))};
4

[17] 372 —Fall 2005 — 34

move

move(i) advances the position by i characters.

move returns the substring of the subject that is
matched as a result of changing the position.

The program below sets t to a string containing the
characters of line followed by periods:

t := ""
line ? while t := t || move(1) || "."

[18]

372 —Fall 2005 — 34

Snapshots

Use snap() in ie to show the current subject and
position:

]["hi there" ? {move(2);snap();move(3);snap()};
&subject = h i t h e r e
&pos = 3 |
&subject = h i t h e r e
&pos = 6 |

You can do this in your own programs by saying link
scan and calling the function snapshot() .

[19] 372 —Fall 2005 — 34

move. . .

]["hi there" ? {s := move(3); snap(); write(s)};
&subject = h i t h e r e
&pos = 4 |
hi

[20]

372 —Fall 2005 — 34

move. . .

Split up a string in odd and even characters.

procedure sep(S)
O := E := ""
S ? while O ||:= move(1) & E ||:= move(1)
suspend O | E

end

procedure main()
every i := sep("a1b2c3d4e5") do write(i)

end

> icont sep.icn
> sep
abcde
12345 [21] 372 —Fall 2005 — 34

tab

tab(i) moves to position i in the subject and returns
the substring between the old and new positions.

]["hi there" ? {s := tab(5); snap(); write(s)};
&subject = h i t h e r e
&pos = 5 |
hi t

[22]

372 —Fall 2005 — 34

String Scanning Functions

The other string scanning functions behave the same
as previously shown, except that they operate on
&subject and &pos implicitly.

upto(s) returns the position of any of the characters in
s , starting at the current position (&pos).

many(s) returns the position following the longest
possible substring containing only characters in s
starting at the current position.

]["xxyyxxxxxzzz" ? {tab(5); write(many(’x’))};

10

]["abxxyyzzz" ? {tab(4); every write(upto(’xy’))};

4

5

6

[23] 372 —Fall 2005 — 34

Extracting Vowels

Generate all the vowels in a string.

procedure vowels(S)
S ? every tab(upto(’aeiou’)) do suspend move(1)

end

procedure main()
every i := vowels("foobar") do write(i)

end

> icont vowels.icn
> vowels
o
o
a

[24]

372 —Fall 2005 — 34

String Scanning Functions. . .

any(c) succeeds if the first character in the subject
string is in the cset c .

]["booyah" ? {write(any(’b’))};
2
]["booyah" ? {write(any(’c’))};
Failure

[25] 372 —Fall 2005 — 34

String Scanning Functions. . .

match (t) succeeds if t matches the initial characters
of the subject string and returns the position after the
matched part.

]["booyah" ? {write(match("boo"))};
4

r33 := 4 (integer)
]["booyah" ? {write(match("koo"))};
Failure

[26]

372 —Fall 2005 — 34

Combining String Scanning Functions

It’s common to combine tab and move with the other
string scanning functions to extract pieces of text.

]["booyah" ? {write(tab(match("boo"))); snap()};
boo
&subject = b o o y a h
&pos = 4 |
]["xxx123yyy" ? {tab(many(&ascii--&digits));

snap()};
&subject = x x x 1 2 3 y y y
&pos = 4 |

r36 := &null (null)
]["xxx123yyy" ? {tab(many(&ascii--&digits));

write(tab(many(&digits)))};
123

[27] 372 —Fall 2005 — 34

Combining String Scanning Functions

tab(match(S)) is so common that a shorthand has
been created.

=S returns the string S if it matches the beginning of
&subject , and also moves &pos to the position after S.

]["booyah" ? {write(="foo");snap()};
&subject = b o o y a h
&pos = 1 |
]["booyah" ? {write(="boo"); snap()};
boo
&subject = b o o y a h
&pos = 4 |

[28]

372 —Fall 2005 — 34

Extracting Words

procedure getword(str)
str ? while tab(upto(&letters)) do {

word := tab(many(&letters))
suspend word

}
end

tab(upto(&letters)) advances the position up to
the next letter.

tab(many(&letters)) matches the word and
assigns it to word .

The while terminates when tab(upto(&letters))
fails because there are no more words in str.

[29] 372 —Fall 2005 — 34

Extracting Words. . .

The program below lists the most commonly used
words in its input and their frequencies of occurrence.

procedure main(args)
k := integer(args[1]) | 10
words := table(0)
while line := read() do

every words[getword(line)] +:= 1
words := sort(words, 4)
every 1 to k do

write(pull(words), "\n", pull(words))
end

[30]

372 —Fall 2005 — 34

Summary

[31] 372 —Fall 2005 — 34

Summary — Position Functions

These functions take strings or cset s as arguments
and either fail or return exactly one position in the string
as result.

any(c) Returns 2 if the first charcter in &subject is in
the cset c .

many(c) Returns the position following the longest initial
substring of &subject consisting only of char-
acters from the cset c .

match(s) If the string s occurs at the beginning of
&subject then returns the position following
s .

[32]

372 —Fall 2005 — 34

Summary — Position Generators

These functions take strings or cset s as arguments
and generate zero or more positions as results.

find(s) Generates all the positions in &subject at
which the string s occurs.

upto(c) Generates all the positions in &subject con-
taining characters from the cset c .

[33] 372 —Fall 2005 — 34

Summary — Position Movers

These functions take a position as argument and move
to a new position (if it exists), returning the substring
from the initial to the new position as result.

move(p) Moves p characters forward in &subject .
Returns the substring which was passed over
during the move.

tab(p) Moves to position p in &subject . Returns the
substring which was passed over during the
move.

[34]

372 —Fall 2005 — 34

Examples — Position Functions

"foo" ? any(’f’) Succeeds and returns 2.
"foo" ? any(’b’) Fails.
"ooodles" ? many(’od’) Succeeds and returns 5.
"nooodles" ? many(’od’) Fails.
"foobar" ? match("foo") Succeeds and returns 4.
"boofar" ? match("foo") Fails.

[35] 372 —Fall 2005 — 34

Examples — Position Generators

"fooboo" ? find("oo") Generates the positions
{2,5 }.

"fooboo" ? find("aa") Fails.
"foobar" ? upto(’ao’) Generates the positions

{2,3,5 }.
"foobar" ? upto(’xy’) Fails.

[36]

372 —Fall 2005 — 34

Examples — Position Movers

"foobar" ? write(move(3)) Moves three steps
forward (i.e., sets
&pos:=&pos+3 (4))
and writes "foo" .

"foobar" ? write(tab(3)) Sets &pos to 3 and writes
"fo" .

[37] 372 —Fall 2005 — 34

Readings and References

Read Christopher, pp. 53--55, 57--58 .

[38]

372 —Fall 2005 — 34

Acknowledgments

Some material on these slides has been modified from
William Mitchell’s Icon notes:
http://www.cs.arizona.edu/classes/cs372/fall03/hand outs.html .

Some material on these slides has been modified from
Thomas W Christopher’s Icon Programming Language
Handbook,
http://www.tools-of-computing.com/tc/CS/iconprog.pd f .

[39]

http://www.cs.arizona.edu/classes/cs372/fall03/handouts.html
http://www.tools-of-computing.com/tc/CS/iconprog.pdf

	String Parsing
	{	t find}
	{	t find}ldots
	Removing Nested Comments
	Nested Commentsldots
	Nested Commentsldots
	csets
	{	t csets}ldots
	{	t upto}
	{	t many}
	{	t any}
	{	t match}
	Removing Whitespace
	String Scanning
	String Scanning
	String Scanningldots
	{	t move}
	Snapshots
	{	t move}ldots
	{	t move}ldots
	{	t tab}
	String Scanning Functions
	Extracting Vowels
	String Scanning Functionsldots
	String Scanning Functionsldots
	Combining String Scanning Functions
	Combining String Scanning Functions
	Extracting Words
	Extracting Wordsldots
	Summary
	Summary --- Position Functions
	Summary --- Position Generators
	Summary --- Position Movers
	Examples --- Position Functions
	Examples --- Position Generators
	Examples --- Position Movers
	Readings and References
	Acknowledgments

