CSc 372

Comparative Programming
Languages
7 . Haskell — Patterns

Christian Collberg

col I ber g+372@meai [. com

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 7 (1]

Pattern Matching

Haskell has a notation (called patterns) for defining
functions that is more convenient than conditional
(i f-then-el se) expressions.

Patterns are particularly useful when the function has
more than two cases.

Pattern Syntax:

function_nane pattern.l = expression_l
functi on_nane pattern2 = expression?2

function_nane pattern.n expression.n

372 —Fall 2005 — 7 [2]

Pattern Matching. ..

fact n = if n == 0 then
1
el se
n * fact (n-1)
f act Revisited:

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

— N = —_ 1l

Pattern Matching. ..

Pattern matching allows us to have alternative
definitions for a function, depending on the format of the
actual parameter. Example:

i sNice "Jenny" = "Definitely"
i sNi ce "Johanna" = "Maybe"
isNice "Chris" = "No Way"

N~ — N = —_ r1

collberg+372@gmail.com

Pattern Matching. ..

#® We can use pattern matching as a design aid to help us
make sure that we're considering all possible inputs.

Pattern matching simplifies taking structured function
arguments apart. Example:

fun (x:xs) = x & fun xs
=
fun xs = head xs @ fun (tail xs)

—Fall 2005 — 7 (5]

Pattern Matching. ..

When a function f is applied to an argument, Haskell
looks at each definition of f until the argument matches
one of the patterns.

not True = Fal se
not Fal se = True

372 —Fall 2005 — 7 (6]

Pattern Matching. ..

In most cases a function definition will consist of a
number of mutually exclusive patterns, followed by a
default (or catch-all) pattern:

di ary "Monday" "Wbke up”
di ary "Sunday" "Slept in"
diary anyday = "Did sonething el se"

diary "Sunday" = "Slept in"
diary "Tuesday" = "D d sonething el se"

1 A — r1

Pattern Matching — Integer Patterns

There are several kinds of integer patterns that can be
used in a function definition.

Pattern Syntax Example Description

variable | var_name | factn="--- n matches any ar-
gument

constant | literal factO=--- matches the value

wildcard | _ five =5 __matches any ar-
gument

(n+k) pat. | (n+k) fact (n+1) =--- | (n+k) matches

any integer > k

g 1 A — rol

Pattern Matching — List Patterns The sunl i st Function

There are also special patterns for matching and (taking Using conditional expr:

apart) lists. sumist :: [Int] -> Int

sumist xs =if xs ==] then O
Pattern Syntax | Example Description el se head xs + sumist(tail xs)
cons (x:xs) | len (x:xs) = --- | matches non-empty list Using patterns:
empty [] len[]=0 matches the empty list sumist :: [Int] -> Int
one-elem | [x] len [x] = 1 matches a list with ex- sumist [] =0
actly 1 element. sumist (x:xs) = x + sunmlist xs

two-elem | [x.y] len [xy] =2 ?catllti ge;eamllesrt]tg th ex- # Note that patterns are checked top-down! The ordering

of patterns is therefore important.

—Fall 2005 — 7 [9] 372 —Fall 2005 — 7 [10]
The |l engt h Function Revisited Thef act Function Revisited
Using conditional expr: Using conditional expr:
o [Int] -> Int fact n =if n ==0then 1 else n * fact (n-1)
' s = if s =[] then O else 1 + len (tail s) Using patterns:
Using patterns: fact’ :: Int -> Int
[Int] -> Int fact” 0 =1

I
[] =0 fact” (n+l) = (n+l) * fact’ n
 (xs) =1 + len xs

Arefact andfact’ identical?

Note how similar | en and suni i st are. Many fact (-1) — Stack overfl ow

recursive functions on lists will have this structure. fact’ (-1) = Program Error

The second patterninfact’ only matches positive
integers (> 1).

— N = —_ MM11 N~ — N = —_ Mo

Summary

Functional languages use recursion rather than iteration
to express repetition.

We have seen two ways of defining a recursive function:
using conditional expressions (i f -t hen- el se) or
pattern matching.

A pattern can be used to take lists apart without having
to explicitly invoke head and t ai | .

Homework

Define a recursive function addi nt s that returns the
sum of the integers from 1 up to a given upper limit.

® Simulate the execution of addi nts 4.

addints :: Int -> Int
addints a = .-

? addints 5

» Patterns are checked from top to bottom. They should 15
therefore be ordered from specific (at the top) to
general (at the bottom). 2 addints 2
3
—Fall 2005 — 7 [13] 372 —Fall 2005 — 7 [14]
Homework Homework

® Define a recursive function menber that takes two
arguments — an integer x and a list of integers L — and
returns Tr ue if x is an element in L.

Simulate the execution of nrenber 3 [1,4, 3, 2].

menber :: Int ->[Int] -> Bool
menber x L = ---

? menber 1 [1,2, 3]
True

? menber 4 [1, 2, 3]
Fal se

— N = —_ Mci

\Write a recursive function nenber Num x L which
returns the number of times x occurs in L.

#® Use nmenber Numto write a function uni que L which
returns a list of elements from L that occurs exactly

once.
menberNum :: Int -> [Int] -> Int
unique :: [Int] -> Int

? memberNum 5 [1,5, 2, 3,5, 5]
3

? unique [2,4,2,1,4]
1

N~ — N = —_ Moel

Homework |

» Ackerman’s function is defined for nonnegative integers:

A(0,n) = n+1
A(m,0) = A(m—1,1)
A(m,n) = A(m—1,A(m,n—1))

Use pattern matching to implement Ackerman’s
function.

Flag all illegal inputs using the built-in functionerror S
which terminates the program and prints the string S.

ackerman :: Int ->1Int -> Int
ackerman 0 5 = 6
ackerman (-1) 5 = ERROR

—Fall 2005 — 7 [17]

	Pattern Matching
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matching -- Integer Patterns
	Pattern Matching -- List Patterns
	The {	t sumlist} Function
	The {	t length} Function Revisited
	The {	t fact} Function Revisited
	Summary
	Homework
	Homework
	Homework
	Homework

