
372 —Fall 2005 — 8

CSc 372

Comparative Programming
Languages

8 : Haskell — Function Examples

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 8

Functions over Lists

[2]

372 —Fall 2005 — 8

Breaking Lists — ctake

ctake n xs (from the standard prelude) takes a
number n and a list of characters, and returns the first n
elements of the list.

Examples:
ctake 3 [’a’,’b’,’c’,’d’,’e’] ⇒ [’a’,’b’,’c’]
ctake 3 [’a’,’b’] ⇒ [’a’,’b’]

Haskell:
ctake :: Int -> [Char] -> [Char]
ctake 0 = []
ctake [] = []
ctake (n+1) (x:xs) = x : ctake n xs

[3] 372 —Fall 2005 — 8

Don’t Get Confused!

What do the two arrows in the signature of ctake
mean?

ctake :: Int -> [Char] -> [Char]

This is something called Currying, which we will talk
about in the next lecture.

For now, think “two arrows in the function signature
means the function takes two arguments.”

This is a lie, but I’ll be more truthful later.

ctake takes an Int and a list of Char s as input, and
returns a list of Char s.

[4]

collberg+372@gmail.com

372 —Fall 2005 — 8

Breaking Lists — drop

drop n xs (from the standard prelude) takes a
number n and a list, and returns the remaining
elements when the first n have been removed.

Examples:
drop 3 [’a’,’b’,’c’,’d’,’e’] ⇒ [’d’,’e’]
drop 3 [’a’,’b’] ⇒ []
drop 3 [1,2,3,4,5] ⇒ [4,5]

Haskell:
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop [] = []
drop (n+1) (x:xs) = drop n xs

[5] 372 —Fall 2005 — 8

Don’t Get Confused (take 2)!

What do the two [a] s in the signature of drop mean?
drop :: Int -> [a] -> [a]

drop is what’s called a Polymorphic Function, which
we will talk more about soon.

The idea is that a is a type variable, that can take on
any type we want.

So, drop can work on lists of Int s, lists of Char s, etc.

[6]

372 —Fall 2005 — 8

List Element Selection

The operator !! in the standard prelude returns an
element of a list. Lists are indexed starting at 0.

Examples:
[2,5,8,3,9,5,7] !!3 ⇒ 3
[2,5] !!3 ⇒ ERROR
[[1],[2,3],[4]] !!1!!0 ⇒ 2

We can write our own list element selector function:

elmt :: [Int] -> Int -> Int
elmt (x:) 0 = x
elmt (:xs) (n+1) = elmt xs n

[7] 372 —Fall 2005 — 8

Don’t Get Confused (take 3)!

We can actually define elmt to be an operator, just like
in the standard prelude:

infixl 9 !!

(!!) :: [a] -> Int -> a
(x:) !! 0 = x
(:xs) !! (n+1) = xs !! n

infixl 9 declares !! to be a left-associative operator
with precedence 9.

We’ll talk more about this later. . .

[8]

372 —Fall 2005 — 8

The zip Function

zip takes two lists xs and ys and returns a list zs of
pairs drawn from xs and ys . xs and ys are combined
like the two parts of a zipper.

Extra elements from different length lists are discarded.

Examples:
zip [1,2] [’a’,’b’] ⇒ [(1,’a’),(2,’b’)]
zip [1,2,3] [’a’,’b’] ⇒ [(1,’a’),(2,’b’)]

Haskell:
zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip = []

[9] 372 —Fall 2005 — 8

The remdups Function

Define a function to remove duplicate adjacent
elements from a list:

remdups [1] ⇒ [1]
remdups [1,2,1] ⇒ [1,2,1]
remdups [1,2,1,1,2] ⇒ [1,2,2]
remdups [1,1,1,2] ⇒ [1,2,1]

We have to consider three cases:
1. The first two elements of the list are identical.

Remove one of them, then remove duplicates from
the rest of the list.

2. The first two elements are different. Keep them and
remove duplicates from the rest of the list.

3. There are fewer that two elements in the list. Keep
them.

[10]

372 —Fall 2005 — 8

The remdups Function. . .

Algorithm in English:
Case 1: Let the first two elements of the list be x and y . Let

x==y . Example: L==[1,1,2,3], x==y==1 . Discard
x . Recursively remove duplicates from the remaining
list L=[1,2,3] .

Case 2: The first two elements of the list (x,y) are different
(x/=y). Example: L==[1,2,2,3], x==1, y==2 .
Append x onto the result of removing duplicates from
the list L’=[2,2,3] from which x has been removed.

Case 3: The list has 0 or 1 element. Return it.

[11] 372 —Fall 2005 — 8

The remdups Function. . .

Simulation:
remdups [1,2,2] ⇒

1:(remdups 2:[2]) ≡ ⇐ case 2,x=1,y=2,xs=[2]
1:(remdups [2,2]) ⇒

1:(remdups 2:[]) ≡ ⇐ case 1,x=y=2,xs=[]
1:(remdups [2]) ⇒

1:[2] ⇒ ⇐ case 3,xs=[2]
[1,2]

[12]

372 —Fall 2005 — 8

The remdups Function. . .

Algorithm in Haskell:
remdups :: [Int] -> [Int]
remdups x:y:xs =

if x == y then
remdups y:xs ⇐ case 1

else
x : remdups y:xs ⇐ case 2

remdups xs = xs ⇐ case 3

case 1: First two elements identical.

case 2: First two elements different.

case 3: Less than 2 elements left.

x:y:xs matches any list with 2 or more elements.
[13] 372 —Fall 2005 — 8

Haskell Guards

Remember the guard syntax in Haskell:

fun name fun args
| guard 1 = expr 1

| guard 2 = expr 2

· · ·
| otherwise = expr n

This is equivalent to:
fun name fun args

if guard 1 then
expr 1

else if guard 2 then
expr 2

else if · · ·
else expr n

[14]

372 —Fall 2005 — 8

Haskell Guards. . .

Many functions become more succinct using guards:

fact with guards:
fact :: Int -> Int
fact n

| n==0 = 1
| otherwise = n * fact (n-1)

remdups with guards:
remdups :: Eq [a] => [a] -> [a]
remdups (x:y:xs)

| x==y = remdups (y:xs)
| x /= y = x : remdups (y:xs)

remdups xs = xs

[15] 372 —Fall 2005 — 8

Don’t Get Confused (take 4)!

What does the Eq [a] => mean in the signature of
remdups ?
remdups :: Eq [a] => [a] -> [a]

Again, remdups is defined as a polymorphic function,
and should therefore work on lists of any element type.

However, it will only work on elements for which == is
defined, because, without an equality test available we
can’t test if two adjacent elements are the same!

Eq [a] => means that remdups can only be applied
to elements that can be compared with ==.

We’ll talk more about this later. . . .

[16]

372 —Fall 2005 — 8

The append Function

We want to define a function that appends two lists
together:
append [1,2] [3,4] ⇒ [1,2,3,4]
append [] [1,2] ⇒ [1,2]

Only use cons (":") and recursion.
Remember that cons creates a new list from an
element x and a list xs , such that x is the first element
and xs the last elements of the list:

5 : [1,2] ⇒ [5,1,2]

[17] 372 —Fall 2005 — 8

The append Function. . .

“Algorithm” for append xs ys :
1. Take xs apart and use cons to put the elements

together to make a new list.

2. Again use cons to make ys the tail of this new list.

[18]

372 —Fall 2005 — 8

The append Function. . .

Simulation:
append [1,2,3] [4,5] ⇒

1: (append [2,3] [4,5]) ⇒
1: (2: (append [3] [4,5])) ⇒

1: (2: (3: (append [] [4,5]))) ⇒
1: (2: (3: [4,5])) ⇒

1: (2: [3,4,5]) ⇒
1: [2,3,4,5] ⇒

[1,2,3,4,5]

[19] 372 —Fall 2005 — 8

The append Function. . .

Note how we take the first argument apart when going
into the recursion, and how it is put together when
returning back up.

Notice also that the second argument to append is
never traversed. It is simply “tacked on” (using cons) to
the end of the new list when the bottom of the recursion
has been reached.

[20]

372 —Fall 2005 — 8

The append Function. . .

Algorithm in Haskell:
append :: [a] -> [a] -> [a]
append [] xs = xs
append (x:xs) ys = x : append xs ys

++ as append :

It is more convenient to define append as an infix
operator. ++ is predefined in the standard prelude.

infixr 5 ++
(++) :: [a] -> [a] -> [a]
[]++xs = xs
(x:xs) ++ ys = x : (xs ++ ys)

[21] 372 —Fall 2005 — 8

Local Definitions

[22]

372 —Fall 2005 — 8

The where Clause

In some languages we can nest declarations, i.e.
declarations can be made local to a particular
procedure:
function P (· · ·) : · · ·

function X (· · ·) : · · ·
....

begin · · · X(· · ·) · · · end.

The local function X can only be accessed from within
P. This is an important way to break a complicated
routine into manageable chunks. We also hide the
definition of X from routines other than P.

Haskell has a where -clause that works much the same
way as a local function or variable.

[23] 372 —Fall 2005 — 8

The where Clause. . .

The where -clause follows after a function body:
fun name fun args =

<fun body>
where

decl 1

decl 2

· · ·
decl n

A declaration decl i is like any global function definition.

Note that a constant declaration id = expr is allowed
since it is seen as a constant 0-argument function.

[24]

372 —Fall 2005 — 8

The where Clause. . .

deriv f x =
(f(x+dx) - f x)/dx

where dx = 0.0001

sqrt x = newton f x
where f y = yˆ2 - x

Note that the scope (area of visibility) of a where -clause
is the entire right-hand side of the function definition.

[25] 372 —Fall 2005 — 8

The where Clause. . .

g :: Int -> Int
g n | (n ‘mod‘ 3) == x = x

| (n ‘mod‘ 3) == y = y
| (n ‘mod‘ 3) == z = z

where x = 0
y = 1
z = 2

[26]

372 —Fall 2005 — 8

The let Clause

An other, less flexible way, of introducing a local
definition, is the let -clause.

The syntax of a let -clause:
let

<local definitions>
in

<expression>

Note that the scope of the let -clause is only one
expression, whereas the where clause can span over
several.

[27] 372 —Fall 2005 — 8

The let Clause. . .

f :: [Int] -> [Int]
f [] = []
f xs =

let
square a = a * a
one = 1
(y:ys) = xs

in
(square y + one) : f ys

[28]

372 —Fall 2005 — 8

The let Clause. . .

f [1,2] ⇒
(square 1 + one) : f [2] ⇒
2 : f [2] ⇒

2 : ((square 2 + one) : f [])) ⇒
2 : (5 : f []) ⇒

2 : (5 : []) ⇒
2 : [5] ⇒

[2,5]

[29] 372 —Fall 2005 — 8

Rational Arithmetic Package

[30]

372 —Fall 2005 — 8

Rational Arithmetic

Build a package implementing rational arithmetic.

Arithmetic Laws:

a

b
+

c

d
=

ad + bc

bd
a

b
∗

c

d
=

ac

bd

a

b
−

c

d
=

ad − bc

bd
a

b
/
c

d
=

ad

bc

5

4
+

6

7
=

5 ∗ 7 + 4 ∗ 6

4 ∗ 7
=

59

28
5

4
∗

6

7
=

5 ∗ 6

4 ∗ 7
=

15

14

[31] 372 —Fall 2005 — 8

Rational Arithmetic. . .

There is more than one way to represent the same
rational number:

1

7
=

−1

−7
=

3

21
=

168

1176

We would like to represent each rational number a
b

in
the simplest way, called the normal form, such that a

and b are relatively prime. Hence, 168

1176
would always be

represented as 1

7
.

Two numbers a and b are relatively prime if a and b have
no common divisor. 9 and 16 are relatively prime, but 9
and 15 aren’t (they both have the common divisor 3).

0 is always represented by 0

1
.

[32]

372 —Fall 2005 — 8

Rational Arithmetic. . .

We represent a rational number as a tuple of the
numerator and the denominator:

type Rat = (Int, Int)

We normalize a Rat by dividing the numerator and
denominator by their greatest common divisor.

normRat :: Rat -> Rat
normRat (,0) = error("Invalid! \n")
normRat (0,) = (0,1)
normRat (x,y) = (a ‘div‘ d,b ‘div‘ d)

where a = (signum y) * x
d = abs y
b = gcd a b

normRat (-168,1176) ⇒ (-1,7)

[33] 372 —Fall 2005 — 8

Rational Arithmetic. . .

The signum Function:
signum x (from the standard prelude) returns -1 if x is
negative, 0 if x is 0, and 1 if x is positive.

signum :: (Num a, Ord a) => a -> Int
signum n | n == 0 = 0

| n > 0 = 1
| n < 0 = -1

The gcd Function:
gcd :: Int -> Int -> Int
gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x
gcd’ x y = gcd’ y (rem x y)

gcd 78 42 ⇒ 6
[34]

372 —Fall 2005 — 8

Rational Arithmetic. . .

Arithmetic:
negRat :: Rat -> Rat
negRat (a,b) = normRat (-a,b)

addRat,subRat,mulRat,divRat ::Rat -> Rat -> Rat
addRat (a,b) (c,d) = normRat (a*d + c*b, b*d)
subRat (a,b) (c,d) = normRat (a*d - c*b, b*d)
mulRat (a,b) (c,d) = normRat (a*c, b*d)
divRat (a,b) (c,d) = normRat (a*d, b*c)

Examples:
> addRat (4,5) (5,6)

(49,30)

[35] 372 —Fall 2005 — 8

Rational Arithmetic. . .

Relational Comparison:
eqRat :: Rat -> Rat -> Bool
eqRat (a,0) (c,d) = err
eqRat (a,b) (c,0) = err
eqRat (a,b) (c,d) = (a*d == b*c)

where err = error "Invalid!"

Examples:
> eqRat (4, 0) (4, 1)

Invalid!
> eqRat (4, 0) (4, 0)

Invalid!
> eqRat (4, 5) (4, 5)

True
> eqRat (4, 5) (4, 6)

False
[36]

372 —Fall 2005 — 8

Exercises

[37] 372 —Fall 2005 — 8

Homework

Define a function split xs that takes alist of pairs,
makes two lists, one from the first elements of the pair
and the other from the second pair elements, and
returns the two lists as a pair.

Examples:
split [(1,"a"),(2,"b"),(3,"c")]

⇒ ([1,2,3],["a","b","c"])

split [(1,True),(2,False),(3,False)]
⇒ ([1,2,3],[True,False,False])

[38]

372 —Fall 2005 — 8

Homework

We model vectors as triples of floating point numbers:
type Vector = (Float, Float, Float)

Define functions add’v , scale’v , dot’v (dot
product), and cross’v (cross product) according to the
definitions below:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)

k(a1, a2, a3) = (ka1, ka2, ka3)

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3

(a1, a2, a3) × (b1, b2, b3) = (a2b3 − b2a3, a3b1 − a1b2, a1b2 − a2b1)

[39] 372 —Fall 2005 — 8

Homework. . .

1. Now model 3 × 3 matrices as triples of Vector .

2. Define a function scale’m that scales a matrix mby a
float s , i.e. multiplies all elements by s .

3. Define a function add’m that adds two matrices a and b
together to form a new matrix c , i.e. ci,j = ai,j + bi,j.

4. Define a function transpose’m m that turns the rows
of a matrix minto columns, and vice versa, i.e.
ti,j = mj,i.

[40]

	Functions over Lists
	Breaking Lists --- {	t ctake}
	Don't Get Confused!
	Breaking Lists --- {	t drop}
	Don't Get Confused (take 2)!
	List Element Selection
	Don't Get Confused (take 3)!
	The {	t zip} Function
	The {	t remdups} Function
	The {	t remdups} Functionldots
	The {	t remdups} Functionldots
	The {	t remdups} Functionldots
	Haskell Guards
	Haskell Guardsldots
	Don't Get Confused (take 4)!
	The {	t append} Function
	The {	t append} Functionldots
	The {	t append} Functionldots
	The {	t append} Functionldots
	The {	t append} Functionldots
	Local Definitions
	The {	t where} Clause
	The {	t where} Clauseldots
	The {	t where} Clauseldots
	The {	t where} Clauseldots
	The {	t let} Clause
	The {	t let} Clauseldots
	The {	t let} Clauseldots
	Rational Arithmetic Package
	Rational Arithmetic
	Rational Arithmeticldots
	Rational Arithmeticldots
	Rational Arithmeticldots
	Rational Arithmeticldots
	Rational Arithmeticldots
	Exercises
	Homework
	Homework
	Homeworkldots

