CSc 372 - Comparative Programming Languages

11 : Haskell - Higher-Order Functions
Christian Collberg
Department of Computer Science
University of Arizona
collberg+372@gmail.com

Copyright © 2005 Christian Collberg
September 16, 2005

1 Higher-Order Functions

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- Higher-order function aren't weird; the differentiation operation from high-school calculus is higherorder:

```
deriv :: (Float->Float)->Float->Float
deriv f x = (f(x+dx) - f x)/0.0001
```

- Many recursive functions share a similar structure. We can capture such "recursive patterns" in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

2 Currying Revisited

- We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

Uh, what was this currying thing?

- A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

3 Currying Revisited...

How is a curried function defined?

- A curried function of n arguments (of types $t_{1}, t_{2}, \cdots, t_{n}$) that returns a value of type t is defined like this:

- This is sort of like defining n different functions (one for each $->$). In fact, we could define these functions explicitly, but that would be tedious:

```
fun
fun
```



```
fun}2\mp@subsup{a}{3}{}\cdots\cdots\mp@subsup{a}{n}{}=
```


4 Currying Revisited...

Duh, how about an example?

- Certainly. Lets define a recursive function get_nth n xs which returns the n :th element from the list xs:

```
get_nth 1 (x:_) = x
get_nth n (_:xs) = get_nth (n-1) xs
get_nth 10 "Bartholomew" = 'e'
```

- Now, let's use get_nth to define functions get_second, get_third, get_fourth, and get_fifth, without using explicit recursion:

```
get_second = get_nth 2 | get_fourth = get_nth 4
get_third = get_nth 3 get_fifth = get_nth 5
```


5 Currying Revisited...

```
get_fifth "Bartholomew" = 'h'
```

map (get_nth 3)
["mob", "sea", "tar", "bat"] \Rightarrow
"bart"
So, what's the type of get_second?

- Remember the Rule of Cancellation?
- The type of get_nth is Int $->$ [a] $->$ a.
- get_second applies get_nth to one argument. So, to get the type of get_second we need to cancel get_nth's first type: Ifhtt \quad [a] \rightarrow a \equiv [a] \rightarrow a.

6 Patterns of Computation

- Apply a function f to the elements of a list L to make a new list L^{\prime}. Example: Double the elements of an integer list.

Selections

- Extract those elements from a list L that satisfy a predicate p into a new list L^{\prime}. Example: Extract the even elements from an integer list.

Folds

- Combine the elements of a list L into a single element using a binary function f. Example: Sum up the elements in an integer list.

7 The map Function

- map takes two arguments, a function and a list. map creates a new list by applying the function to each element of the input list.
- map's first argument is a function of type $a->b$. The second argument is a list of type [a]. The result is a list of type [b].

```
map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs
```

- We can check the type of an object using the :type command. Example: :type map.

8 The map Function...

```
map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs)= f x : map f xs
inc x = x + 1
map inc [1,2,3,4] }=>[2,3,4,5
```


9 The map Function...

map :: (a $->$ b) $->$ [a] \rightarrow [b]
$\operatorname{map} f[$] $=$ []
$\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs}) \quad=\mathrm{f} \mathrm{x}: \operatorname{map} \mathrm{f} \mathrm{xs}$
$\operatorname{map} \mathrm{f}[]=[$] means: "The result of applying the function f to the elements of an empty list is the empty list."
$\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{fx}: \operatorname{map} \mathrm{f} \mathrm{xs}$ means: "applying f to the list ($\mathrm{x}: \mathrm{xs}$) is the same as applying f to x (the first element of the list), then applying f to the list $x s$, and then combining the results."

10 The map Function. . .

Simulation:

```
map square [5,6] }
    square 5 : map square [6] }
    25 : map square [6] }
        25 : (square 6 : map square [ ]) =>
        25 : (36 : map square [ ]) =>
            25 : (36 : [ ]) =
        25 : [36] }
    [25,36]
```


11 The filter Function

- Filter takes a predicate p and a list L as arguments. It returns a list L^{\prime} consisting of those elements from L that satisfy p.
- The predicate p should have the type a $->$ Bool, where a is the type of the list elements.

Examples:

```
filter even [1..10] }=>\mathrm{ [2,4,6,8,10]
filter even (map square [2..5]) }
    filter even [4,9,16,25] }=>[4,16
filter gt10 [2,5,9,11,23,114]
    where gt10 x = x > 10 }=>\mathrm{ [11,23,114]
```


12 The filter Function. . .

- We can define filter using either recursion or list comprehension.

> Using recursion:

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
    | p x = x : filter p xs
    | otherwise = filter p xs
```

Using list comprehension:
filter :: (a -> Bool) -> [a] -> [a]
filter p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

13 The filter Function. . .

14 The filter Function. . .

- doublePos doubles the positive integers in a list.

```
getEven :: [Int] -> [Int]
getEven xs = filter even xs
doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
    where dbl x = 2 * x
                pos x = x > 0
```

Simulations:
getEven $[1,2,3] \Rightarrow[2]$
doublePos $[1,2,3,4] \Rightarrow$
map dbl (filter pos $[1,2,3,4]) \Rightarrow$
map dbl $[2,4] \Rightarrow[4,8]$

15 fold Functions

- A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

Examples:

```
sum [1,2,3,4,5] \equiv
    (1 + (2 + (3 + (4 + (5 + 0))))) ) = 15
concat ["H","i","!"] \equiv
        ("H" ++ ("i" ++ ("!" ++ ""))) => "Hi!"
```

- Notice how similar these operations are. They both combine the elements in a list using some binary operator (+, ++), starting out with a "seed" value ($0, ~ " "$).

16 fold Functions. . .

- Haskell provides a function foldr ("fold right") which captures this pattern of computation.
- foldr takes three arguments: a function, a seed value, and a list.

Examples:

```
foldr (+) 0 [1,2,3,4,5] => 15
foldr (++) "" ["H","i","!"] = "Hi!"
```

foldr:
foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [] = z
foldr $f \mathrm{z}$ (x:xs) $=\mathrm{f} x$ (foldr $\mathrm{f} \mathrm{z} x$)

17 fold Functions. . .

- Note how the fold process is started by combining the last element x_{n} with z . Hence the name seed.

$$
\mathrm{foldr}(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left(\mathrm{x}_{1} \oplus\left(\mathrm{x}_{2} \oplus\left(\cdots\left(\mathrm{x}_{n} \oplus \mathrm{z}\right)\right)\right)\right)
$$

- Several functions in the standard prelude are defined using foldr:

```
and,or :: [Bool] -> Bool
and xs = foldr (&&) True xs
or xs = foldr (||) False xs
? or [True,False,False] }
    foldr (||) False [True,False,False] }
    True || (False || (False || False)) = True
```


18 fold Functions. . .

- Remember that foldr binds from the right:
foldr (+) $0[1,2,3] \Rightarrow(1+(2+(3+0)))$
- There is another function foldl that binds from the left:
foldl (+) $0[1,2,3] \Rightarrow(((0+1)+2)+3)$
- In general:

$$
\text { foldl }(\oplus) \mathbf{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left(\left(\left(\mathbf{z} \oplus \mathrm{x}_{1}\right) \oplus \mathrm{x}_{2}\right) \oplus \cdots \oplus \mathrm{x}_{n}\right)
$$

19 fold Functions. . .

- In the case of (+) and many other functions

$$
\text { foldl }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\text { foldr }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]
$$

- However, one version may be more efficient than the other.

20 fold Functions...

21 Operator Sections

- We've already seen that it is possible to use operators to construct new functions:
(*2) - function that doubles its argument
$(>2)-$ function that returns True for numbers >2.
- Such partially applied operators are know as operator sections. There are two kinds:

$$
(o p a) b=b \text { op } a
$$

```
(*2) 4 = 4*2=8
(>2) 4 = 4 > 2 = True
(++ "\n") "Bart" = "Bart" ++ "\n"
```


22 Operator Sections...

Examples:
(+1) - The successor function.
(/2) - The halving function.
(: []) - The function that turns an element into a singleton list.
More Examples:

```
? filter (0<) (map (+1) [-2, -1,0,1])
    [1,2]
```


23 takeWhile \& dropWhile

- We've looked at the list-breaking functions drop \& take:

```
take 2 ['a','b','c'] # ['a','b']
drop 2 ['a','b','c'] => ['c']
```

- takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

```
takeWhile even [2,4,6,5,7,4,1] }
    [2,4,6]
dropWhile even [2,4,6,5,7,4,1] }
    [5,7,4,1]
```


24 takeWhile \& dropWhile...

```
takeWhile :: (a->Bool) -> [a] -> [a]
takeWhile p [ ] = [ ]
takeWhile p (x:xs)
    | p x = x : takeWhile p xs
    | otherwise = [ ]
dropWhile :: (a->Bool) -> [a] -> [a]
dropWhile p [ ] = [ ]
dropWhile p (x:xs)
    | p x = dropWhile p xs
    | otherwise = x:xs
```


25 takeWhile \& dropWhile...

- Remove initial/final blanks from a string:

```
dropWhile ((==) 'ь') "பபேHi!" \(\Rightarrow\)
```

 "Hi!"
 takeWhile ((/=) '๖') "Hi! பபப" \Rightarrow
"Hi!"

26 Summary

- Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called partial application.
- Operator sections are partially applied infix operators.

27 Summary...

- The standard prelude contains many useful higher-order functions:
$\operatorname{map} \mathrm{f} x$ creates a new list by applying the function f to every element of a list xs.
filter \mathbf{p} xs creates a new list by selecting only those elements from $x s$ that satisfy the predicate p (i.e. ($\mathrm{p} x$) should return True).
foldr $f \mathbf{z ~ x s}$ reduces a list xs down to one element, by applying the binary function f to successive elements, starting from the right.
scanl/scanr fzes perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.

28 Homework

Homework (a):

- Define the map function using a list comprehension.

> Template:
$\operatorname{map} f \mathrm{x}=\left[\begin{array}{lll}\cdots & \mid \cdots\end{array}\right]$
Homework (b):

- Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.

> Examples:
? lengthall ["Ay", "Caramba!"]
[2, 8]

29 Homework

1. Give a accumulative recursive definition of foldl.
2. Define the minimum xs function using foldr.
3. Define a function sumsq n that returns the sum of the squares of the numbers $[1 \cdots n]$. Use map and foldr.
4. What does the function mystery below do?
```
mystery xs =
    foldr (++) [] (map sing xs)
sing x = [x]
```

Examples:

```
minimum [3,4,1,5,6,3] => 1
```


30 Homework...

- Define a function zipp f xs ys that takes a function f and two lists $x s=\left[x_{1}, \cdots, x_{n}\right]$ and $y s=\left[y_{1}, \cdots, y_{n}\right]$ as argument, and returns the list $\left[\begin{array}{llllll}f & x_{1} & y_{1}, \cdots, f & x_{n} & y_{n}\end{array}\right]$ as result.
- If the lists are of unequal length, an error should be returned.

Examples:
zipp (+) $[1,2,3][4,5,6] \Rightarrow[5,7,9]$
zipp (==) [1,2,3] [4,2,2] \Rightarrow [False,True,True]
zipp (==) [1,2,3] [4,2] \Rightarrow ERROR

31 Homework

- Define a function filterFirst p xs that removes the first element of xs that does not have the property p.

> Example:
filterFirst even $[2,4,6,5,6,8,7] \Rightarrow$ $[2,4,6,6,8,7]$

- Use filterFirst to define a function filterLast p xs that removes the last occurence of an element of xs without the property p.

Example:
filterLast even $[2,4,6,5,6,8,7] \Rightarrow$ $[2,4,6,5,6,8]$

