CSc 372 - Comparative Programming Languages

12 : Haskell - Composing Functions
Christian Collberg
Department of Computer Science
University of Arizona
collberg+372@gmail.com

Copyright © 2005 Christian Collberg
September 16, 2005

1 Composing Functions

We want to discover frequently occurring patterns of computation. These patterns are then made into (often higher-order) functions which can be specialized and combined. map $f L$ and filter $f L$ can be specialized and combined:

```
double :: [Int] -> [Int]
double xs = map ((*) 2) xs
positive :: [Int] -> [Int]
positive xs = filter ((<) 0) xs
doublePos xs = map ((*) 2) (filter ((<) 0) xs)
? doublePos [2,3,0,-1,5]
[4, 6, 10]
```


2 Composing Functions...

- Functional composition is a kind of "glue" that is used to "stick" simple functions together to make more powerful ones.
- In mathematics the ring symbol (0) is used to compose functions:

$$
(f \circ g)(x)=f(g(x))
$$

- In Haskell we use the dot (".") symbol:
infixr 9 .
(.) $::(\mathrm{b}->\mathrm{c})->(\mathrm{a}->\mathrm{b})->(\mathrm{a}->\mathrm{c})$
$(\mathrm{f} \cdot \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$

3 Composing Functions...

(.) $::(\mathrm{b}->\mathrm{c})->(\mathrm{a}->\mathrm{b})->(\mathrm{a}->\mathrm{c})$
$(\mathrm{f} . \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$

- ". " takes two functions f and g as arguments, and returns a new function h as result.
- g is a function of type $\mathrm{a}->\mathrm{b}$.
- f is a function of type b->c.
- h is a function of type $a->c$.
- (f.g) (x) is the same as $z=g(x)$ followed by $f(z)$.

4 Composing Functions...

- We use functional composition to write functions more concisely. These definitions are equivalent:

```
doit x = f1 (f2 (f3 (f4 x)))
doit x = (f1 . f2 . f3 . f4) x
doit = f1 . f2 . f3 . f4
```

- The last form of doit is preferred. doit's arguments are implicit; it has the same parameters as the composition.
- doit can be used in higher-order functions (the second form is preferred):

```
? map (doit) xs
? map (f1 . f2 . f3 . f4) xs
```


5 Example: Splitting Lines

- Assume that we have a function fill that splits a string into filled lines:

```
fill :: string -> [string]
fill s = splitLines (splitWords s)
```

- fill first splits the string into words (using splitWords) and then into lines:

```
splitWords :: string -> [word]
splitLines :: [word] -> [line]
```

- We can rewrite fill using function composition:
fill = splitLines . splitWords

6 Precedence \& Associativity

1. "." is right associative. I.e.
f.g.h.i.j $=$ f.(g.(h.(i.j)))
2. "." has higher precedence (binding power) than any other operator, except function application:
$5+\mathrm{f} . \mathrm{g} 6=5+(\mathrm{f} . \quad(\mathrm{g} 6))$
3. "." is associative:
$\mathrm{f} \cdot(\mathrm{g} \cdot \mathrm{h})=(\mathrm{f} \cdot \mathrm{g}) \cdot \mathrm{h}$
4. "id" is "."'s identity element, i.e id . $f=f=f$. id:
id :: a -> a
id $\mathrm{x}=\mathrm{x}$

7 The count Function

- Define a function count which counts the number of lists of length n in a list L :
count $2[[1],[],[2,3],[4,5],[]] \Rightarrow 2$ Using recursion:

```
count :: Int -> [[a]] -> Int
count _ [] = 0
count n (x:xs)
    | length x == n = 1 + count n xs
    | otherwise = count n xs
Using functional composition:
```

```
count' n = length . filter (==n) . map length
```


8 The count Function...

```
count' n = length . filter (==n) . map length
```

- What does count' do?

$$
\begin{gathered}
{[[1],[],[2,3],[4,5],[]]} \\
\downarrow \text { map length } \\
{[1,0,2,2,0]} \\
\downarrow 2,2] \\
\downarrow \\
2
\end{gathered}
$$

- Note that

```
count' n xs = length (filter (==n) (map length xs))
```


9 The init \& last Functions

- last returns the last element of a list.
- init returns everything but the last element of a list.

Definitions:

```
last = head . reverse
init = reverse . tail . reverse
```

Simulations:

$$
\begin{aligned}
& {[1,2,3] \stackrel{\text { reverse }}{\Longrightarrow}[3,2,1] \stackrel{\text { head }}{\Longrightarrow} 3} \\
& {[1,2,3] \stackrel{\text { reverse }}{\Longrightarrow}[3,2,1] \stackrel{\text { tail }}{\Longrightarrow}[2,1] \stackrel{\text { reverse }}{\Longrightarrow}[1,2]}
\end{aligned}
$$

10 The any Function

- any p xs returns True if $p x==$ True for some x in x :
any $((==) 0)[1,2,3,0,5] \Rightarrow$ True
any $((==) 0)[1,2,3,4] \Rightarrow$ False
Using recursion:

```
any :: (a -> Bool) -> [a] -> Bool
any - [] = False
any p (x:xs) = | p x = True
    | otherwise = any p xs
Using composition:
```

any $p=$ or \quad map p
$[1,0,3]$ map $\xlongequal{((==) 0)}[$ False, True, False $] \stackrel{\text { or }}{\Longrightarrow}$ True

11 commaint Revisited...

- Let's have another look at one simple (!) function, commaint.
- commaint works on strings, which are simply lists of characters.
- You are hndt now supposed to understand this!

From the commaint documentation:

[commaint] takes a single string argument containing a sequence of digits, and outputs the same sequence with commas inserted after every group of three digits, ...

12 commaint Revisited...

```
? commaint "1234567"
    1,234,567
    commaint in Haskell:
commaint = reverse . foldr1 (\x y->x++","++y).
        group 3 . reverse
        where group n = takeWhile (not.null).
    map (take n).iterate (drop n)
```


13 commaint Revisited...

14 commaint Revisited...

```
commaint = reverse . foldr1 (\x y->x++","++y).
    group 3 . reverse
    where group n = takeWhile (not.null) .
    map (take n).iterate (drop n)
```

- iterate (drop 3) s returns the infinite list of strings
[s, drop 3 s, drop 3 (drop 3 s), drop 3 (drop 3 (drop 3 s)), \cdots]
- map (take n) xss shortens the lists in xss to n elements.

15 commaint Revisited...

```
commaint = reverse . foldr1 (\x y->x++","++y).
            group 3 . reverse
            where group n = takeWhile (not.null).
            map (take n).iterate (drop n)
```

- takeWhile (not.null) removes all empty strings from a list of strings.
- foldr1 ($\backslash \mathrm{x} y->\mathrm{x}++", "++\mathrm{y}) \mathrm{s}$ takes a list of strings s as input. It appends the strings together, inserting a comma in between each pair of strings.

16 Lambda Expressions

- ($\backslash x \quad y->x++", "++y)$ is called a lambda expression.
- Lambda expressions are simply a way of writing (short) functions inline. Syntax:
\ arguments -> expression
- Thus, commaint could just as well have been written as

```
commaint = ... . foldr1 insert . ...
    where group n = ...
        insert x y = x++","++y
```

 Examples:
    ```
squareAll xs = map (\ x -> x * x) xs
```

length = foldl' ($\backslash \mathrm{n}$ - $->\mathrm{n}+1$) 0

17 Summary

- The built-in operator "." (pronounced "compose") takes two functions f and g as argument, and returns a new function h as result.
- The new function $h=f . \quad g$ combines the behavior of f and g : applying h to an argument a is the same as first applying g to a, and then applying f to this result.
- Operators can, of course, also be composed: ((+2). (*3)) 3 will return $2+(3 * 3)=11$.

18 Homework

- Write a function mid xs which returns the list xs without its first and last element.

1. use recursion
2. use init, tail, and functional composition.
3. use reverse, tail, and functional composition.
```
? mid [1,2,3,4,5] }=>[2,3,4
? mid [] }=>\mathrm{ ERROR
? mid [1] }=>\mathrm{ ERROR
? mid [1,3] }=>\mathrm{ []
```

