CSc 372 - Comparative Programming Languages

13: Haskell - List Comprehension
Christian Collberg
Department of Computer Science
University of Arizona
collberg+372@gmail.com

Copyright © 2005 Christian Collberg
September 19, 2005

1 List Comprehensions

- Haskell has a notation called list comprehension (adapted from mathematics where it is used to construct sets) that is very convenient to describe certain kinds of lists. Syntax:
[expr | qualifier, qualifier, ...]
In English, this reads:
"Generate a list where the elements are of the form expr, such that the elements fulfill the conditions in the qualifiers."
- The expression can be any valid Haskell expression.
- The qualifiers can have three different forms: Generators, Filters, and Local Definitions.

2 Generator Qualifiers

- Generate a number of elements that can be used in the expression part of the list comprehension. Syntax:

```
pattern <- list_expr
```

- The pattern is often a simple variable. The list_expr is often an arithmetic sequence.
$[\mathrm{n} \mid \mathrm{n}<-[1 . .5]] \Rightarrow[1,2,3,4,5]$
$[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1 . .5]] \Rightarrow[1,4,9,16,25]$
$[(n, n * n) \mid n<-[1 . .3]] \Rightarrow[(1,1),(2,4),(3,9)]$

3 Filter Qualifiers

- A filter is a boolean expression that removes elements that would otherwise have been included in the list comprehension. We often use a generator to produce a sequence of elements, and a filter to remove elements which are not needed.
$[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1 . .9]$, even n$] \Rightarrow[4,16,36,64]$
$[(\mathrm{n}, \mathrm{n} * \mathrm{n}) \mid \mathrm{n}<-[1 . .3], \mathrm{n}<\mathrm{n} * \mathrm{n}] \Rightarrow[(2,4),(3,9)]$

4 Local Definitions

- We can define a local variable within the list comprehension. Example:

```
[n*n | n = 2] # [4]
```


5 Qualifiers

- Earlier generators (those to the left) vary more slowly than later ones. Compare nested for-loops in procedural languages, where earlier (outer) loop indexes vary more slowly than later (inner) ones.

> Pascal:

```
for i := 1 to 9 do
    for j := 1 to 3 do
        print (i, j)
```

Haskell:

```
[(i,j) | i<-[1..9], j<-[1..3]] =>
    [ (1,1), (1,2), (1,3),
        (2,1), (2,2), (2,3),
        (9,1), (9, 2), (9, 3)]
```


6 Qualifiers...

- Qualifiers to the right may use values generated by qualifiers to the left. Compare Pascal where inner loops may use index values generated by outer loops.

Pascal:

```
for i := 1 to 3 do
    for j := i to 4 do
        print (i, j)
```

Haskell:
$[(i, j) \mid i<-[1 . .3], j<-[i . .4]] \Rightarrow$
[$(1,1),(1,2),(1,3),(1,4)$
$(2,2),(2,3),(2,4)$,
$(3,3),(3,4)]$
$[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1.10]$, even n$] \Rightarrow[4,16,36,64,100]$

7 Example

- Define a function doublePos xs that doubles the positive elements in a list of integers.

In English:
"Generate a list of elements of the form $2 * x$, where the $x: s$ are the positive elements from the list xs.

In Haskell:

```
doublePos :: [Int] -> [Int]
doublePos xs = [2*x | x<-xs, x>0]
> doublePos [-1,-2,1,2,3]
    [2,4,6]
```

- Note that xs is a list-valued expression.

8 Example

- Define a function spaces n which returns a string of n spaces.

> Example:
> spaces 10
" ॥

Haskell:

```
spaces :: Int -> String
spaces n = [', | i <- [1..n]]
```

- Note that the expression part of the comprehension is of type Char.
- Note that the generated values of i are never used.

9 Example

- Define a function factors n which returns a list of the integers that divide n . Omit the trivial factors 1 and n .

Examples:

```
factors 5 # []
factors 100 }=>[2,4,5,10,20,25,50
```

In Haskell:
factors :: Int -> [Int]
factors $\mathrm{n}=[\mathrm{i} \mid \mathrm{i}<-[2 \ldots \mathrm{n}-1], \mathrm{n}$ 'mod' $\mathrm{i}==0$]

10 Example

Pythagorean Triads:

- Generate a list of triples (x, y, z) such that $x^{2}+y^{2}=z^{2}$ and $x, y, z \leq n$.

```
triads n = [(x,y,z)|
    x<-[1..n], y<-[1..n], z<-[1..n],
    x^2 + y^2 == z^2]
triads 5 }=>[(3,4,5),(4,3,5)
```


11 Example...

- We can easily avoid generating duplicates:

```
triads' n = [(x,y,z)|
    x<-[1..n], y<-[x..n], z<-[y..n],
    x^2 + y^2 == z^2]
triads' 11 }=>[(3,4,5),(6,8,10)
```


12 Example - Making Change

- Write a function change that computes the optimal (smallest) set of coins to make up a certain amount. Defining available (UK) coins:

```
type Coin = Int
coins :: [Coin]
coins = reverse (sort [1,2,5,10,20,50,100])
```

Example:

```
> change 23
```

 [20, 2, 1]
 $>$ coins
$[100,50,20,10,5,2,1]$
> all_change 4
$[[2,2],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1]]$

13 Example - Making Change. . .

- all_change returns all the possible ways of combining coins to make a certain amount.
- all_change returns shortest list first. Hence change becomes simple:
change amount $=$ head (all_change amount)
- all_change returns all possible (decreasing sequences) of change for the given amount.

```
all_change :: Int -> [[Coin]]
all_change 0 = [[]]
all_change amount = [ c:cs |
    c<-coins, amount>=c,
    cs<-all_change (amount - c) ]
```


14 Example - Making Change. . .

- all_change works by recursion from within a list comprehension. To make change for an amount amount we

1. Find the largest coin $\mathrm{c} \leq$ amount: $\mathrm{c}<-$ coins, amount $>=\mathrm{c}$.
2. Find how much we now have left to make change for: amount - c.
3. Compute all the ways to make change from the new amount: cs<-all_change (amount $-c$)
4. Combine c and cs: c:cs.

15 Example - Making Change. . .

- If there is more than one coin $c \leq$ amount, then $c<-c o i n s$, amount $>=c$ will produce all of them. Each such coin will then be combined with all possible ways to make change from amount - c.
- coins returns the available coins in reverse order. Hence all_change will try larger coins first, and return shorter lists first.

```
all_change :: Int -> [[Coin]]
all_change 0 = [[]]
all_change amount = [ c:cs |
    c<-coins, amount>=c,
    cs<-all_change (amount - c) ]
```


16 Summary

- A list comprehension [e|q] generates a list where all the elements have the form e, and fulfill the requirements of the qualifier $q . q$ can be a generator $\mathrm{x}<-1$ ist in which case x takes on the values in list one at a time. Or, q can be a a boolean expression that filters out unwanted values.

17 Homework

- Show the lists generated by the following Haskell list expressions.

1. $[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1 \ldots 10]$, even n$]$
2. [7 | $\mathrm{n}<-[1 . .4]$]
3. $[(x, y) \mid x<-[1 . .3], y<-[4 . .7]]$
4. $[(m, n) \mid m<-[1 . .3], n<-[1 . . m]]$
5. [j | i<-[1,-1,2,-2], i>0, j<-[1..i]]
6. $[a+b \mid(a, b)<-[(1,2),(3,4),(5,6)]]$

18 Homework

- Use a list comprehension to define a function neglist xs that computes the number of negative elements in a list xs.

> Template:

```
neglist :: [Int] -> Int
neglist n = ...
```

Examples:
> neglist $[1,2,3,4,5]$
0
> neglist $[1,-3,-4,3,4,-5]$
3

19 Homework

- Use a list comprehension to define a function gensquares low high that generates a list of squares of all the even numbers from a given lower limit low to an upper limit high.

```
gensquares :: Int -> Int -> [Int]
gensquares low high = [... | ...]
Examples:
> gensquares 2 5
    [4, 16]
> gensquares 3 10
    [16, 36, 64, 100]
```

