
CSc 372 — Comparative Programming Languages

14 : Haskell — Lazy Evaluation

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

September 21, 2005

1 Lazy evaluation

• Haskell evaluates expressions using a technique called lazy evaluation:

1. No expression is evaluated until its value is needed.

2. No shared expression is evaluated more than once; if the expression is ever evaluated then the
result is shared between all those places in which it is used.

• Lazy functions are also called non-strict and evaluate their arguments lazily or by need.

• C functions and Java methods are strict and evaluate their arguments eagerly.

2 Don’t Evaluate Until Necessary

• The first of these ideas is illustrated by the following function:

ignoreArgument x = "I didn’t evaluate x"

• Since the result of the function ignoreArgument doesn’t depend on the value of its argument x, that
argument will not be evaluated:

$ hugs +s

> ignoreArgument (1/0)

I didn’t evaluate x

(246 reductions, 351 cells)

3 Don’t Evaluate Until Necessary. . .

• The function seq forces strict evaluation when that is necessary:

> seq ignoreArgument (1/0)

Inf

(32 reductions, 78 cells)

1



4 Evaluate Shared Expressions Once

• The second basic idea behind lazy evaluation is that no shared expression should be evaluated more
than once.

• For example, the following two expressions can be used to calculate 3 ∗ 3 ∗ 3 ∗ 3:

$ hugs +s

> square*square where square = 3*3

81

(30 reductions, 67 cells)

> (3*3)*(3*3)

81

(34 reductions, 45 cells)

5 Evaluate Shared Expressions Once. . .

• Notice that the first expression requires fewer reduction than the second.

• A reduction is the basic step of evaluating a Haskell expression, by applying a function to its argument.

6 Saving Reductions

• Consider these sequences of reductions:

square * square where square = 3 * 3

-- calculate the value of square by

-- reducing 3*3==>9 and replace each

-- occurrence of square with this result

==> 9 * 9

==> 81

(3 * 3) * (3 * 3) -- evaluate first (3*3)

==> 9 * (3 * 3) -- evaluate second (3*3)

==> 9 * 9

==> 81

• Lazy evaluation means that only the minimum amount of calculation is used to determine the result
of an expression.

7 Taking the Minimum

• Consider the task of finding the smallest element of a list of integers.

> minimum [100,99..1]

1

(2355 reductions, 3211 cells)

• [100,99..1] denotes the list of integers from 1 to 100 arranged in decreasing order.

• Instead, we could first sort and then take the head of the result:

2



> :load List

> sort [100,99..1]

[1, 2, 3, 4, 5, 6, 7, 8, ..., 99, 100]

(3430 reductions, 8234 cells)

8 Taking the Minimum. . .

• However, thanks to lazy evaluation, calculating just the first element of the sorted list actually requires
less work in this particular case than the first solution using minimum:

> head (sort [100,99..1])

1

(1877 reductions, 3993 cells)

> minimum [100,99..1]

1

(2355 reductions, 3211 cells)

9 Infinite data structures

• Lazy evaluation makes it possible for functions in Haskell to manipulate ‘infinite’ data structures.

• The advantage of lazy evaluation is that it allows us to construct infinite objects piece by piece as
necessary

• The function ones below generates an infinite list of 1s:

ones = 1 : ones

> take 10 ones

[1,1,1,1,1,1,1,1,1,1]

(277 reductions, 389 cells)

10 Infinite data structures. . .

• Consider the following function which can be used to produce infinite lists of integer values:

countFrom n = n : countFrom (n+1)

> countFrom 1

[1, 2, 3, 4, 5, 6, 7, 8,^CInterrupted!]

11 Infinite data structures. . .

• For practical applications, we are usually only interested in using a finite portion of an infinite data
structure.

• We can find the sum of the integers 1 to 10:

> sum (take 10 (countFrom 1))

55

(278 reductions, 440 cells)

• take n xs evaluates to a list containing the first n elements of the list xs.

3



12 Infinite data structures. . .

• Infinite data structures enable us to describe an object without being tied to one particular application
of that object.

• The following definitions for infinite list of powers of two [1, 2, 4, 8, . . . ]:

powersOfTwo = 1 : map double powersOfTwo

where double n = 2*n

> take 10 powersOfTwo

[1,2,4,8,16,32,64,128,256,512]

13 Infinite data structures. . .

• xs!!n evaluates to the n:th element of the list xs.

• We can define a function to find the nth power of 2 for any given integer n:

powersOfTwo = 1 : map (*2) powersOfTwo

twoToThe n = powersOfTwo !! n

> twoToThe 5

32

14 Fibonacci

• Here’s a definition of a function that generates an infinite list of all the fibonacci numbers:

fib = 1:1:[a+b| a,b <-zip fib (tail fib)]

> take 10 fib

[1,1,2,3,5,8,13,21,34,55]

15 Acknowledgements

• These slides were derived mostly from the Gofer manual.

Functional programming environment, Version 2.20
c© Copyright Mark P. Jones 1991.

4


