
CSc 372 — Comparative Programming Languages

15 : Haskell — Exercises

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

October 5, 2005

1 List Prefix

• Write a recursive function begin xs ys that returns true if xs is a prefix of ys. Both lists are lists of
integers. Include the type signature.

> begin [] []

True

> begin [1] []

False

> begin [1,2] [1,2,3,4]

True

> begin [1,2] [1,1,2,3,4]

False

> begin [1,2,3,4] [1,2]

2 List Containment

• Write a recursive function subsequence xs ys that returns true if xs occurs anywhere within ys.
Both lists are lists of integers. Include the type signature.

• Hint: reuse begin from the previous exercise.

> subsequence [] []

True

> subsequence [1] []

False

> subsequence [1] [0,1,0]

True

> subsequence [1,2,3] [0,1,0,1,2,3,5]

True

1

3 Mystery

• Consider the following function:

mystery :: [a] -> [[a]]

mystery [] = [[]]

mystery (x:xs) = sets ++ (map (x:) sets)

where sets = mystery xs

• What would mystery [1,2] return? mystery [1,2,3]?

• What does the funtion compute?

4 foldr

• Explain what the following expressions involving foldr do:

1. foldr (:) [] xs

2. foldr (:) xs ys

3. foldr (y ys -> ys ++ [y]) [] xs

5 shorter

• Define a function shorter xs ys that returns the shorter of two lists.

> shorter [1,2] [1]

[1]

> shorter [1,2] [1,2,3]

[1,2]

6 stripEmpty

• Write function stripEmpty xs that removes all empty strings from xs, a list of strings.

> stripEmpty ["", "Hello", "", "", "World!"]

["Hello","World!"]

> stripEmpty [""]

[]

> stripeEmpty []

[]

7 merge

• Write function merge xs ys that takes two ordered lists xs and ys and returns an ordered list con-
taining the elements from xs and ys, without duplicates

> merge [1,2] [3,4]

[1,2,3,4]

> merge [1,2,3] [3,4]

[1,2,3,4]

> merge [1,2] [1,2,4]

[1,2,4]

2

8 Function Composition

• Rewrite the expression

map f (map g xs)

so that only a single call to map is used

9 Reduce

• Let the Haskell function reduce be defined by

reduce f [] v = v

reduce f (x:xs) v = f x (reduce f xs v)

• Reconstruct the Haskell functions length, append, filter, and map using reduce. More precisely, com-
plete the following schemata (in the simplest possible way):

mylength xs = reduce ___ xs ___

myappend xs ys = reduce ___ xs ___

myfilter p xs = reduce ___ xs ___

mymap f xs = reduce ___ xs ___

10 372 Midterm 2004 – Problem 1

• Write a non-recursive function

invert :: [Bool] -> [Bool]

that turns all True values into False, and False values into True. Example:

> invert [True,False]

[False,True]

11 372 Midterm 2004 – Problem 2

• Write a non-recursive function count p xs that takes a predicate p and a list xs of elements (of
arbitrary type) as arguments and returns the number of elements in the list that satisfies p:

> count even [1,2,3,4,5]

2

• Ideally, you should define the function using composition of higher-order functions from the standard
prelude!

12 372 Midterm 2004 – Problem 3

• Write a non-recursive function blend xs ys that takes two lists of elements (of arbitrary type) as
argument, and returns a list where the elements have been taken alternatingly from xs and ys:

> blend [1,2,3] [4,5,6]

[1,4,2,5,3,6]

You can assume that xs and ys are of the same length.

3

13 372 Midterm 2004 – Problem 4

• Write a function adjpairs that takes a list as argument and returns the list of all pairs of adjacent
elements. Examples:

> adjpairs []

[]

> adjpairs [1]

[]

> adjpairs [1,2]

[(1,2)]

> adjpairs [1,2,3]

[(1,2),(2,3)]

> adjpairs [1,2,3,4,5,6]

[(1,2), (2,3), (3,4), (4,5), (5,6)]

• Give both a recursive and a non-recursive solution!

14 372 Midterm 2004 – Problem 5

• Write a non-recursive function section f c xs that extracts a sublist of the list xs starting at position
f and which is c elements long. Use 0-based indexing. Assume that xs has at least f+c elements.
Examples:

> section 0 1 [1,2,3,4,5]

[1]

> section 0 3 [1,2,3,4,5]

[1,2,3]

> section 1 3 [1,2,3,4,5]

[2,3,4]

> section 4 1 [1,2,3,4,5]

[5]

15 372 Midterm 2004 – Problem 6

• Given these Haskell function definitions

duh :: [Int] -> Int -> [[Int]]

duh xs a = duh’ xs a []

duh’ [] _ [] = []

duh’ [] _ xs = [xs]

duh’ (x:xs) a ys

| a == x = nut ys (duh’ xs a [])

| otherwise = duh’ xs a (ys ++ [x])

nut [] xs = xs

nut xs ys = xs : ys

4

16 372 Midterm 2004 – Problem 6. . .

answer these questions:

1. What is the result of nut [] [[1,2]]?

2. What is the result of nut [2] [[1,2]]?

3. What is the most general type of nut?

4. What is the result of duh [1,2,3] 1?

5. What is the result of duh [1,2,3,1,4] 1?

17 372 Midterm 2004 – Problem 7

What are the results of these Haskell expressions?

1. filter p [[1],[1,2],[1,2,3],[1,2,3,4]]

where p xs = length xs > 2

2. filter (not . even . length) xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]

3. foldr (\ xs i -> length xs + i) 0 xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]

4. iterate id 1

5. (fst. head . zip [1,2,3]) [4,5,6]

18 372 Final 2004 – Problem 1

• Given these Haskell function definitions

mystery :: [a] -> [[a]]

mystery xs = [take n xs,drop n xs]

where n = h xs

h :: [a] -> Int

h [] = 0

h [_] = 0

h (_:_:xs) = 1 + h xs

what does the expression

mystery [1,2,3,4,5]

return?

19 372 Final 2004 – Problem 2

1. What is referential transparency? Illustrate with an Icon procedure and a Haskell function.

2. Haskell is a lazy language. What does this mean?

5

