CSc 372 — Comparative Programming Languages

19 : Prolog — Matching

Christian Collberg
Department of Computer Science
University of Arizona
collberg+3720gmail.com

Copyright (© 2005 Christian Collberg

October 5, 2005

1 Unification & Matching

e So far, when we’ve gone through examples, I have said simply that when trying to satisfy a goal, Prolog
searches for a matching rule or fact.

What does this mean, to match?

Prolog’s matching operator or =. It tries to make its left and right hand sides the same, by assigning
values to variables.

e Also, there’s an implicit = between arguments when we try to match a query

7- f(x,y)
to a rule
f(A,B) :-
2 Matching Examples
The rule:
deriv(U °C, X, C * U "L * DU) :-
number(C), L is C - 1,
deriv(U, X, DU).
?- deriv(x "3, x, D).
D = 1x3%xx"2
The goal:

e x "3 matches U ~C
—x=U0U,C=3
e x matches X

e D matches C * U "L * DU

3 Matching Examples...

deriv(U+V, X, DU + DV) :-
deriv(U, X, DU),
deriv(V, X, DV).

?- deriv(x"3 + x"2 + 1, x, D).
D = 1%3%x72+1%2*%xx~1+0

e x "3 + x”2 + 1 matchesU + V

— x "3 + x"21is bound to U

— 1 1is bound to V

4 Matching Algorithm

Can two terms A and F be “made identical,” by assigning values to their variables?

Two terms A and F' match if

1. they are identical atoms

2. one or both are uninstantiated variables

3. they are terms A = fa(ay, -+ ,a,) and F = fr(fi, -+, fm), and

(a) the arities are the same (n = m)
(b) the functors are the same (fa = fF)

(c) the arguments match (a; = f)

5 Matching — Examples

A F A=F variable subst.
a a yes
a b no
sin(X) sin(a) yes 0 = {X=a}
sin(a) sin(X) yes 0 = {X=a}
cos(X) sin(a) no
sin(X) sin(cos(a)) yes 0 = {X=cos(a)}

A F A=F variable subst.
likes(c, X) likes(a, X) no
likes(c, X) likes(c, Y) yes 0 ={X=Y}
likes(X, X) likes(c, Y) yes 0 = {X=c, X=Y}
likes(X, X) likes(c, -) yes 0 = {X=c, X=4T7}
likes(c, a(X)) likes(V, Z) ves 0 = {V=c,Z=a(X)}
likes(X, a(X)) likes(c, Z) yes 0 = {X=c,Z=a(X)}

7 Matching Consequences

Consequences of Prolog Matching;:
e An uninstantiated variable will match any object.
e An integer or atom will match only itself.
e When two uninstantiated variables match, they share:
— When one is instantiated, so is the other (with the same value).

e Backtracking undoes all variable bindings.

8 Matching Algorithm

FUNC Unify (A, F: term) : BOOL;
IF Is Var(F) THEN Instantiate F to A
ELSIF Is Var(A) THEN Instantiate A to F
ELSIF Arity(F)#Arity(A) THEN RETURN FALSE
ELSIF Functor (F)#Functor(A) THEN RETURN FALSE
ELSE
FOR each argument : DO
IF NOT Unify(A(i), F(i)) THEN
RETURN FALSE

RETURN TRUE;

9 Visualizing Matching

e From Prolog for Programmers, Kluzniak & Szpakowicz, page 18.

e Assume that during the course of a program we attempt to match the goal p(X, b(X, Y)) with a
clause ', whose head is p(X, b(X, y)).

e First we’ll compare the arity and name of the functors. For both the goal and the clause they are 2
and p, respectively.

10 Visualizing Matching. ..

Query

b %
p(X, b(X, Y)) \5

caller

callee

(A, b(c, A) - ... \

5 @K

e The second step is to try to unify the first argument of the goal (X) with the first argument of the
clause head (4).

11 Visualizing Matching. ..

e They are both variables, so that works OK.

e From now on A and X will be treated as identical (they are in the list of variable substitutions 6).

12 Visualizing Matching. ..

Query

p(X], X,) \ J
e

caller
callee
p(&], blc, A - ... b
0 ={A=X} /
C

13 Visualizing Matching. ..

e Next we try to match the second argument of the goal (b(X, Y)) with the second argument of the
clause head (b(c, A)).

e The arities and the functors are the same, so we go on to to try to match the arguments.

=~

e The first argument in the goal is X, which is matched by the first argument in the clause head (c). Le.,
X and c are now treated as identical.

14 Visualizing Matching. ..

uer
b Z y
pX, b(X], Y)) /
X caller
c callee
A
b
p(A’ b(s A)) N
§={A=X X=c}
Head

15 Visualizing Matching. ..

e Finally, we match A and Y. Since A=X and X=c, this means that Y=c as well.

16 Visualizing Matching. ..

b Query
p(X, bCX, [YD) / J
Y
X caller
C callee
A b
p(h, blc, [AD) - ...
0={A=XX=c A=Y}
Head

17 Readings and References

e Read Clocksin-Mellish, Sections 2.4, 2.6.3.

18 Prolog So Far...

e A term is either a

— a constant (an atom or integer)

— a variable

— a structure
Two terms match if

— there exists a variable substitution # which makes the terms identical.
Once a variable becomes instantiated, it stays instantiated.
Backtracking undoes variable instantiations.

Prolog searches the database sequentially (from top to bottom) until a matching clause is found.

