
CSc 372 — Comparative Programming Languages

29 : Icon — Basics

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

November 30, 2005

Types and Variables

1 Types and Variables

• Local variables don’t have to be declared, but do it anyway!

• Global variables must be declared.

• An variable that has not been declared will automatically be treated as a local variable.

• Icon is dynamically typed. This means that

– You don’t need to declare the types of variables.

– A variable may contain different types of data at runtime.

local X

X := "hello" # String

X := 5 # Integer

X := 6.7 # Real

2 Types and Variables. . .

• · · ·

– You won’t get type errors at compile-time, but you will get them at run-time:

1

procedure main(args)

t := "hello" + 4.5

end

⇓
Run-time error 102
File t.icn; Line 6
numeric expected
offending value: ”hello”
Trace back:

main()
{”hello” + 4.5} from line 2

3 Examining Types

• type(V) will return the name (a string) of the type of V :

record complex(a,b)

t := "hello"

x := type(t) # x="string"

t := [5,6,7]

x := type(t) # x="list"

t := complex(4,5)

x := type(t) # x="complex"

4 Automatic Conversions

• Some data types are automatically converted to the required type. For example, a string (consisting
entirely of digits) can be converted into a number, explicitly or implicitly:

write(5 + "6") # implicit

write(5+integer("6")) # explicit

• Icon will try, as much as it can, to satisfy a request.

5 Examples

][x := 45.9;

r1 := 45.9 (real)

][type(x);

r2 := "real" (string)

]["50" / 2;

r1 := 25 (integer)

]["50.0"/2.0;

r2 := 25.0 (real)

]["50yikes"/2;

Run-time error 102

2

Numbers

6 Integers

• Integers are arbitrary size.

• Icon has the standard arithmetic operators with the expected precedences: +,*,-,/,%. The ^-operator
performs exponentiation.

• Numerical comparison operators: <,<=,=,>=,>,~=.

• Bit-functions: iand,ior,ixor,icom,ishift.

• ?n produces an integer between 1 and n.

7 Reals

• Icon uses native real numbers.

• Mathematical functions: sin,cos,tan,asin,acos,atan,sqrt,exp,log.

• Mathematical constants: &pi,&e.

• ?0 produces a real number between 0.0 and 1.0.

8 Examples

][ior(4,6);

r1 := 6 (integer)

][ishift(2,3);

r2 := 16 (integer)

][234234324234*2343243243242;

r3 := 548867997596676357326628 (integer)

][?100;

r4 := 22 (integer)

][?100;

r5 := 42 (integer)

][?0;

r6 := 0.3157951944 (real)

][?0;

r7 := 0.5104401731 (real)

3

Strings

9 Strings

• Literal strings are given in double quotes: "hi".

• Long strings can be spread over several lines:

s := "this is a _

very long _

string"

• *s returns the length of s.

• String comparison operators: <<,<<=,==,>>=,>,~==.

• String concatenation operator: ||

10 Examples

][n := *"hello world";

r4 := 11 (integer)

][if "hello" << "world" then

write("yes") else write("no");

yes

r5 := "yes" (string)

]["hello" || " " || "world";

r6 := "hello world" (string)

][s := "hello";

r7 := "hello" (string)

][s || *s;

r8 := "hello5" (string)

11 Augmented Operators

• a +:= b means the same as a := a + b.

• The same pattern can be used for all binary operators: a ||:= b is the same as a := a || b.

• a <:= b assigns b to a if a<b.

12 Examples

][s := "hello";

][s ||:= " world";

r9 := "hello world" (string)

][k := 5;

][k +:= 10;

r11 := 15 (integer)

4

][m := 5;

][m <:= 6;

r13 := 6 (integer)

13 Max — String Comparison

procedure main()

max := read()

while line := read() do

max <<:= line

write(max)

end

> icont max.icn

> max

10

20

5

30

5

14 Max — Numerical Comparison

procedure main()

max := read()

while line := read() do

max <:= line # Note the difference!!!

write(max)

end

> icont max.icn

> max

10

20

5

30

30

15 String Positions

• Positions within a string are between characters.

• The first position is 1, and is to the left of the first character.

h i

↑ ↑ ↑
1 2 3

• 0 is also the last position of the string, and you can index from the right using negative numbers:

h i

↑ ↑ ↑
−2 −1 0

5

16 Examples

]["hi"[1];

r24 := "h"

]["hi"[2];

r25 := "i"

]["hi"[3];

Failure

]["hi"[0];

Failure

]["hi"[-1];

r28 := "i"

]["hi"[-2];

r29 := "h"

17 Substrings

• We can extract a substring from position i up to but not including position j in s using s[i:j].

• The same syntax can be used to replace a substring with a new string: s[i:j] := t.

• s[i:i] := t inserts before position i.

• The range specification i+:j specifies a substring at position i of length j.

18 Examples

][s := "hello";

][s[1:3];

r31 := "he"

][s[1:3] := "toc";

][s;

r33 := "tocllo" (string)

][s[2] := "***";

][s;

r35 := "t***cllo" (string)

][s[1:1] := "+++";

][s;

r37 := "+++t***cllo" (string)

s[1+:5];

r38 := "+++t*"

19 Readings and References

• Read Christopher, pp 21--28.

6

