
CSc 372 — Comparative Programming Languages

30 : Icon — Control Structures

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

November 30, 2005

Success and Failure

1 Expressions

• There are fundamental differences in the way Java, C, etc. & Icon statements are executed:

1. Icon statements are expressions that return values.

2. Icon expression either succeed or fail.

• Failure doesn’t necessarily mean that something has gone wrong, rather, it means that there is no
value to return.

• numeric("pi") fails because "pi" cannot be converted to number.

2 Success and Failure

i + j Succeeds and returns the value i + j.

i < j Succeeds if i < j, in which case j is returned. Fails otherwise.

numeric(x) Converts x to a number.

numeric("3.14") Returns 3.14.

numeric("pi") Fails.

• All Icon variables have a special null value initially.

1

3 Examples

][w := "hello world";

r2 := "hello world"

][w[20];

Failure

][numeric("55");

r4 := 55 (integer)

][numeric("pi");

Failure

][x := 42;

][x + numeric("10");

r9 := 52 (integer)

][x + numeric("pi");

Failure

4 Examples. . .

][x + y;

Run-time error 102

offending value: &null

]["hi" || w[20];

Failure

5 Comparisons

• Comparisons in Icon succeed or fail:

– i < j succeeds if i is less than j and fails otherwise.

– If i < j succeeds then the expression returns j.

][i := 5;

][j := 6;

][i < j;

r16 := 6

][j < i;

Failure

6 Comparisons. . .

][max := 5;

][max := max < 6;

r20 := 6

][max;

r21 := 6

][max := max < 3;

Failure

][max;

r23 := 6

][if min < j < max then

2

write("yes") else write("no");

yes

• If min < j then the expression succeeds and produces j which is then compared to max.

7 Expressions

• All Icon expressions return values.

][res := if min < j < max then

write("yes") else write("no");

][res;

r30 := "yes"

][x := 42;

][x := 5 + if 1 > 2 then 3;

Failure

][x;

r39 := 42

][x := 5 + if 2 > 1 then 3;

][x;

r41 := 8

8 Compund Expressions

• Just like in C and Java, several expressions can be aggregated using the syntax {e1, e2, . . . , en}.

• Each expression is executed in turn.

• The value of the last expression is the result of the compound.

• Failure of one of the expression doesn’t make the compund fail.

9 Compund Expressions — Examples

][{1;2};

r42 := 2

][{1>2;3};

r43 := 3

][x := if 2>1 then {1; 3+4};

][x;

r45 := 7

3

Repetition

10 while

• The while-expression has the syntax

while (expr1) do expr2

For as long as expr1 succeeds, expr2 is evaluated.

• The while-expression always fails.

i := 0; s := ""

while (i < 10) do

s ||:= i+:=1 || "."

11 break and next

• break and next behave as in C.

12 not

• not e succeeds and returns null if e fails.

• not e fails if e succeeds.

][not (1>2);

r61 := &null

][not (2>1);

Failure

13 &

• e1&e2 succeeds if both e1 and e2 succeed, and the result is the value of e2.

• e1 is evaluated first and if it succeeds, e2 is evaluated.

• If either of e1 and e2 fail, e1&e2 fails.

14 &. . .

][1 & 2;

r63 := 2

][1 & 2 & 3;

r64 := 3

][1 & (1 > 2);

Failure

][write(1) & (1 > 2);

4

1

Failure

][(1 > 2) & write(2);

Failure

15 &. . .

procedure main()

S := ""

while (line := read()) & (line ~== "end") do

S ||:= " " || line

write(" >>> " || S)

end

> read

hello

world

end

>>> hello world

16 Testing for null

• /expr succeeds if expr is null, and then returns null.

• \expr succeeds if expr is not null, and then returns expr.

• Think of “/e succeeds if e is null because the / falls over, getting no support from e.”

17 Testing for null. . .

][x := &null;

][/x;

r4 := &null

][\x;

Failure

][/x := 42;

][x;

r7 := 42

][/x := 10;

Failure

][x;

r9 := 42 (integer)

18 Booleans

• There is no boolean type in Icon, but you can use null as False and any non-null value as True.

• if \x & \y then then functions as if x and y then would in other languages.

5

][x := 1;

][y := 1;

][if \x & \y then write(42);

42

][if \x | \y then write(42);

42

][if \v | \z then write(42);

Failure

][if \z | \x then write(42);

42

19 Goal-Directed Evaluation

• Icon supports bounded backtracking within one expression.

• Once e1 in if e1 then... has generated a value, no more values are generated.

• Generating one pythagorean triangle:

procedure main()

if i := 1 to 100 & j := 1 to 100 &

k := 1 to 100 & i^2 + j^2 = k^2 then

write(i, " ", j, " ", k)

end

> pythagoras

3 4 5

20 until

• until e1 do e2 behaves the same as while not (e1) do e2.

• If e1 fails then e2 gets evaluated.

][x := 1;

][until x > 10 do x +:= 1;

Failure

][write(x);

11

21 Fibonacci

procedure main()

local i,j

i := 1

j := 1

until i > 1000000 do {

write(i)

i +:= j

i :=: j

}

end

6

• x :=: y swaps the two values in x and y.

22 repeat

• repeat e evaluates e forever.

• Use break or return to exit the loop.

][i := 1;

][repeat {i +:= 1; if i > 10 then break;};

][write(i);

11

23 case

•

case e of {
e1 : s1

e2 : s2

...

default : s3

}

• Similar to repeated if-expression: if e===e1 then s1 else if e===e2 then s2 else... else s3.
The default-part is optional. e1, e2,... can be arbitrary expressions of arbitrary type, not just
scalar constants as in C’s switch statement.

• === is the universal equality test. For two numbers it does a numeric test, for two strings, a string test,
for other kinds of objects (tables, sets, lists) it checks that the objects are the same object.

24 Examples

][5 === 5;

r4 := 5 (integer)

]["5" === "5";

r5 := "5" (string)

][[1,2,3] === [1,2,3];

Failure

][x := [1,2,3];

][x === x;

r9 := L1:[1,2,3] (list)

7

Summary

25 Readings and References

• Read Christopher, pp 28, 45--52.

26 Acknowledgments

• Some material on these slides has been modified from William Mitchell’s Icon notes: http://www.cs.
arizona.edu/classes/cs372/fall03/handouts.html.

• Some material on these slides has been modified from Thomas W Christopher’s Icon Programming
Language Handbook, http://www.tools-of-computing.com/tc/CS/iconprog.pdf.

8

