
CSc 372 — Comparative Programming Languages

33 : Icon — Generators

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

November 30, 2005

1 Expressions as Generators

• Icon expressions are generators, they can return a sequence of values.

• Every expression has three possibilities: It can generate

1. no values (≡ failure),

2. one value, or

3. several values.

2 Expressions as Generators. . .

• Icon has many built-in generators, e.g. i to j by k. The following two statements are equivalent:

every i := j to k do p(i)

every p(j to k)

• every e asks e to generate as many values as it possibly can, by backtracking into it until it fails.

• every e1 do e2 evaluates e2 for every value generated by e1.

3 Expressions as Generators. . .

• The number of values a generator will produce depends on the environment in which it is invoked:

][write(1 to 5);

1

r1 := 1 (integer)

][every write(1 to 5);

1

2

3

4

5

Failure

1

4 find

• find(e1, e2) returns the positions within the string e2 where the string e1 occurs.

• find("wh", "who, what, when") has three possible solutions and hence generates three values.

123456789012345

][every i:=find("wh","who, what, when")

do write(i);

1

6

12

Failure

5 Goal-Directed Evaluation

• Expression evaluation in Icon is goal-directed; you always try to make every expression succeed and
return a value, if at all possible.

• In the example below, find first returns 1. This makes ((i :=...) > 10) fail. Next find generates
14 which makes ((i :=...) > 10) succeed, and write is executed.

S := "where and at what time?"

if (i := find("wh", S) > 10) then

write(i)

6 Goal-Directed Evaluation. . .

][10 < (1 to 12);

r34 := 11

][every write(10 < (1 to 12));

11

12

Failure

7 Counting Vowels

procedure main()

v := 0

while line := read() do {

every c := !line do

if c == !"aeiouAEIOU" then

v +:= 1

}

write("vowels=",v)

end

> vowels

hi there

vowels=3

2

8 find. . .

• The expression

S := "where and at what time?"

][every i := 10<find("wh",S) do write(i);

14

can also be written

][every write(10 < find("wh",S));

14

9 File Operations

• The following statement copies a file f1 row-by-row to another file f2:

while write(f2, read(f1))

• Note that read is not a generator — hence the use of while rather than every.

10 Bang!

• !S Generates all the characters from the string S, or all the elements of the list/table/set S.

• every write(!S) writes all the characters from the stringS, one character per line.

• If S is a variable then !S will generate variables that can be assigned to.

11 Backtracking

• &fail always fails.

][&fail;

Failure

][3;

r38 := 3 (integer)

][3 + &fail;

Failure

][3 + numeric("pi");

Failure

12 Bang! — Examples

• Different ways to write the elements of a list:

][L := [1,2,3];

][every i := !L do write(i);

1

2

3

3

][every write(!L);

1

2

3

13 Bang! — Examples. . .

][every write(L[1 to 3]);

1

2

3

][write(!L) + &fail;

1

2

3

14 Bang!. . .

• If L in !L generates variables, then they can be assigned to:

][every !L := 5;

][L;

r16 := L1:[5,5,5]

][!L := 1;

][L;

r24 := L1:[1,5,5]

15 Bang!. . .

• Note that literal strings cannot be assigned to:

][S := "bye";

][write(!S);

b

][every write(!S);

b

y

e

Failure

][every !S := "m";

][S;

r30 := "mmm" (string)

][every !"bye" := "m";

Run-time error 111

16 Other Built-In Generators

?S Generates random elements from the set, string, table, etc.S.

upto(C, S) Generate all the positions in the string S, where the characters inC occur. C is a special
construction called aCSet, a set of characters.CSets are written in single quotes, strings in doubles.

4

12345678901234

upto (’xyz’, "zebra-ox-young")

generates {1, 8, 10}

Alternation

17 Alternation

• expr1 | expr2 generates the values from expr1, then fromexpr2.

• 1 | 2 | 3 is the same as 1 to 3.

• (1 to 3) | (4 to 6) is the same as 1 to 6.

• &fail | 3 generates 3.

• (1=2) | 3 generates 3.

• (1=1) | 3 generates 1,3 (since 1=1 succeeds and produces 1).

18 Variable generation

• The expression x | y generates the variables x and y.

• The expression every (x | y) := 0 is equivalent to x := 0; y := 0

19 Terminating Execution

• The built-in procedure stop(s) writes s and terminates execution.

• A common idiom is x := p() | stop("error"). If p() fails, then stop and write "error", otherwise
assign the result of p() to x.

20 Variable generation

every i := (0 | 1) do write (i) First write 0 then 1.

every (x | y) := 0 x := 0; y := 0

][x := 1;

][y:= 2;

][every write(x|y);

1

2

][every (x|y) := 42;

][every write(x|y);

42

42

5

21 Examples

][every write(1 | 2 | !"45" | 6);

1

2

4

5

6

][write((1 | 2 | 3) > 2);

2

r13 := 2

][write(2 < (1 | 2 | 3));

3

r14 := 3

22 Examples

][x := 5;

r16 := 5

][y := 6;

r19 := 6

][(x | y) = 6;

r20 := 6

6

Procedures as Generators

23 Procedures as Generators

Procedures are really generators; they can return 0, 1, or a sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and makes itself ready to possibly generate more values.

24 Example

procedure To(i,j)

while i <= j do {

suspend i

i+:= 1

}

end

procedure main()

every k := To(1,3) do

write(k)

end

25 simple.icn

procedure P()

suspend 3

suspend 4

suspend 5

end

procedure main()

every k := P() do

write(k)

end

26 simple.icn. . .

> setenv TRACE 100

> simple

: main()

simple.icn : 8 | P()

simple.icn : 2 | P suspended 3

3

simple.icn : 9 | P resumed

7

simple.icn : 3 | P suspended 4

4

simple.icn : 9 | P resumed

simple.icn : 4 | P suspended 5

5

simple.icn : 9 | P resumed

simple.icn : 5 | P failed

simple.icn : 10 main failed

27 simple.icn. . .

• Remember goal-directed evaluation — Icon will resume a generator as many times as necessary in order
to try to make an expression succeed.

• The number of times a generator is invoked also depends on the context.

28 simple.icn. . .

][.inc simple.icn;

][P();

r1 := 3 (integer)

][every write(P());

3

4

5

][P()=4;

r3 := 4

][P() + 10;

r4 := 13

8

Bounded Expressions

29 Bounded Expressions

• Unlike Prolog, backtracking in Icon is bounded. This means that a generator that appears in certain
parts of certain control constructs will never generate more than one value.

• if e1 then e2 else e3 — e1 is bounded, e2 and e3 are not.

• while e1 do e2 — e1 and e2 are both bounded.

• every e1 do e2 — e1 is not bounded but e2 is.

• {e1, e2, ..., en} — e1, e2,... are bounded but en is not.

30 Example

][if write(P()) then &fail else &fail;

3

Failure

][(if P() then write(P()) else 1) & &fail;

3

4

5

Failure

31 Example. . .

][every i := P() do write(i);

3

4

5

Failure

][while i := P() do write(i);

3

3

3...

][{write(P()); 42} & &fail;

3

32 Example. . .

][every i := {write(1 to 5); 42} do write(i);

1

42

][every i := {write(1 to 5); 10 to 12} do write(i);

1

10

9

11

12

][every i := {write(1 to 5); write(100 to 105); 10 to 12} do write(i);

1

100

10

11

12

10

Summary

33 Readings

• Read Christopher, pp. 35--42, 44, 56--57.

• Alternatively, read Griswold&Griswold, pp. 87--95.

34 Acknowledgments

• Some material on these slides has been modified from William Mitchell’s Icon notes: http://www.cs.
arizona.edu/classes/cs372/fall03/handouts.html.

• Some material on these slides has been modified from Thomas W Christopher’s Icon Programming
Language Handbook, http://www.tools-of-computing.com/tc/CS/iconprog.pdf.

11

