CSc 372 — Comparative Programming Languages

4 : Haskell — Basics

Christian Collberg
Department of Computer Science
University of Arizona
collberg+3720gmail.com

Copyright (© 2005 Christian Collberg

August 24, 2005

1 The Hugs Interpreter

e The Haskell implementation we will be using is called Hugs.

e You interact with Hugs by typing commands to the interpreter, much like you would to a powerful
calculator:

$ hugs

>6 %7

42

> 126 ‘div‘ 3
4

2 The Hugs Interpreter...

e Haskell programs (known as scripts) are just text files with function definitions that can be loaded into
the interpreter using the :1load script command:

$ hugs
> :load file.hs

e Haskell scripts take the file extension .hs.

Haskell Types

3 Expressions

4

5

When we “run” a Haskell program, we actually evaluate an evaluate expression, and the result of the
program is the value of that expression.

Unlike Java programs. Haskell programs have no statements — there is no way to assign a new value
to a variable for example.

Haskell Types

Haskell is strongly typed. This means that every expression has exactly one type.

Haskell is statically typed. This means that the type of an expression can be figured out before we run
the program.

The basic types in Haskell include

Int (word-sized integers)

Integer (arbitrary precision integers)
Float (Floating point numbers)
Tuples and Lists

Strings (really just lists)

AN S A

Function types

Type inference

In Java and most other languages the programmer has to declare what type variables, functions, etc
have.

We can do this too, in Haskell:

> 6%7 :: Int
42

:: Int asserts that the expression 6*7 has the type Int.

Haskell will check for us that we get our types right:

> 6%7 :: Bool
ERROR

6 Type inference...
e We can let the Haskell interpreter infer the type of expressions, called type inference.

e The command :type expression asks Haskell to print the type of an expression:

> :type "hello"
"hello" :: String

> :type True && False

True && False :: Bool
> :type True && False :: Bool
True && False :: Bool

Simple Types

7 Int

e The Int type is a 32-bit signed integer, similar to Java’s int type:

Prelude> (3333333 :: Int) * (44444444444444 :: 1Int)
Program error: arithmetic overflow

Some Haskell versions may instead overflow the integer (yielding a negative number).

8 Int — Operators

e The normal set of arithmetic operators are available:

Op Precedence | Associativity | Description
- 8 right Exponentiation
*, / 7 left Mul, Div
‘div® 7 free Division
‘rem 7 free Remainder
‘mod ¢ 7 free Modulus
+, - 6 left Add, Subtract
==,/= 4 free (In-) Equality
<,<=,>,>= 4 free Relational Compar-
ison
9 Int...
e Note that the div operator has to be in backquotes when used as an infix operator:
> 4%x12-6
42
> 126 ‘div‘ 3
42
> div 126 3
42
10 Int...
e The standard precedence and associativity rules apply:
1+2-3 = (1+2)-3
1+2%3 = 1+(2%3)
27374 = 27(374)
4==b==6 = 0.666666666666667
12/6/3 = ERROR
12/(6/3) = 6

11 Integer

12

13

Haskell also has an infinte precision integer type, similar to Java’s java.math.BigInteger class:

> (3333333 :: Integer) * (44444444444444 :: Integer)
148148133333331851852

Integers are the default integer type:
> 2764
18446744073709551616

Integer. ..

Ints and Integers aren’t compatible:

> (3333333 :: 1Integer) * (44 :: Int)
ERROR - Type error in application

but we can convert from an Int to an Integer:

> (toInteger (55 :: 1Int)) * (66 :: Integer)
3630

Float and Double

Haskell also has built-in floating point numbers Float and Double:

> sqrt 2 :: Float
1.414214
> sqrt 2 :: Double

1.4142135623731
sqrt is a built-in library function.
Double is the default:

> sqrt 2
1.4142135623731

Char

Literals: *a’, ’b’. Special characters: >\n’ (newline).

ASCII: °\65° (decimal), *\x41’ (hex).

There are standard functions on characters (toUpper, isAlpha, etc) defined in the a separate module

Char:

> :load Char
> toUpper ’A’
JA)

> toUpper ’a’
)A)

> ord ’a’

97

15 Char — Built-in Functions

ord :: Char -> Int

char :: Int -> Char

toUpper, tolLower :: Char -> Char
isAscii,isDigit,--- :: Char -> Bool
isUpper,isLower,--- :: Char -> Bool

ord ’a’ = 97 toUpper ’a’ = ’A’
chr 656 = ’A’ 1isDigit ’a’ = False

16 String

e Strings are really lists of characters.

> "hello"

"hello"

> :type "hello"
"hello" :: String

> "hello" :: String
"hello"

> length "hello"

5

> "hello" ++ " world!"
"hello world!"

e ++ does string/list concatenation.

17 Bool

e There are two boolean literals, True and False

Op | Precedence | Associativity | Description

&& 3 right logical and
[2 right logical or
not 9 - logical not
3<5&& 4> 2 & (3<5) & (4 > 2)
True || False && True < True || (False && True)

18

19

Haskell Functions

Functions

Here’s the ubiquitous factorial function:

fact :: Int -> Int
fact n = if n == 0 then
1
else

n * fact (n-1)

The first part of a function definition is the type signature, which gives the domain and range of the
function:

fact :: Int -> Int
The second part of the definition is the function declaration, the implementation of the function:

fact n = if n == 0 then ---

Functions. ..

The syntax of a type signature is
fun name :: arg_types

fact takes one integer input argument and returns one integer result.

The syntax of function declarations:
fun name param names = fun_body

fact is defined recursively, i.e. the function body contains an application of the function itself.

Function application examples:

fact 1 = 1
fact 5 = 120
fact (3+2) = 120

List and Tuple Types

20 Lists
e A list in Haskell consists of a sequence of elements, all of the same type:

> [1,2,3]
[1,2,3]
> [True,False] :: [Bool]
[True,False]
> :type [True,False]
[True,False] :: [Bool]
> :type [[’A’,’B’]1,[°C’,’D’],[1]
[(c’a’,’B’J1,0°C?,°D’]1,[1]1 :: [[Char]]
> [1,True]
ERROR
> length [1,2,3]
3

21 Tuples

e A Haskell tuple is similar to a record/struct in C — it is a collection of objects of (a limited number
of) objects, possibly of different types. Each C struct elements has a unique name, whereas in Haskell
you distinguish between elements by their position in the tuple.

e Syntax: (t1,t9, - ,tn).

type Complex = (Float,Float)
mkComplex :: Float -> Float -> Complex
mkComplex re im = (re, im)

22 Tuples...

type Complex = (Float,Float)
mkComplex :: Float -> Float -> Complex
mkComplex re im = (re im)

mkComplex 5 3 = (5, 3)

addComplex :: Complex -> Complex —> Complex
addComplex (a,b) (c,d) = (atc,b+d)

addComplex (mkComplex 5 3) (mkComplex 4 2) = (9,5)

Haskell Scripts

23 Editing and Loading Scripts

e :load name (or :1 name) loads a new Haskell program.

:reload (or :r) reloads the current script.

e :edit name (or :e name) edits a script. On Unix you can set the EDITOR environment variable to
control which editor to use:

setenv EDITOR emacs

e :7 shows all available commands.

e :quit quits Hugs.

24 The Offside Rule

e When does one function definition end and the next one begin?
square x = X * X
+2

cube x = ---

e Textual layout determines when definitions begin and end.

25 The Offside Rule...

e The first character after the "=" opens up a box which holds the right hand side of the equation:

square x = | X * X
+2

e Any character to the left of the line closes the box and starts a new definition:

square x = | X * X
+2

cube x = ...

26 Comments

e Line comments start with —— and go to the end of the line:
-- This is a comment.

e Nested comments start with {- and end with -}:

! This is a comment.
{-
And here’s another onme....
-}
-}

10

Editing Scripts

27 Emacs

e On Unix, emacs is the editor of choice.
e Depending on your system, it may be called emacs or xemacs.

e For a list of common commands, see the links below.

28 Readings and References

e Chapters 1-3 of Programming in Haskell, bu Graham Hutton, is a good introduction to Haskell: http:
//www.cs.nott.ac.uk/"gmh/book.html

e Emacs Guide: http://www.cs.arizona.edu/classes/cs372/£al103/04.html

e FEmacs Reference Card: http://www.cs.arizona.edu/classes/cs372/fall03/emacs.html

29 Summary
e Haskell has all the basic types one might expect: Ints, Chars, Floats, and Bools.

e Haskell functions come in two parts, the signature and the declaration:

fun name :: argument_types
fun name param names = fun_body

e Many Haskell functions will use recursion.
e Haskell doesn’t have assignment statements, loop statements, or procedures.

e Haskell tuples are similar to records in other languages.

30 Homework

1. Start Hugs.
2. Enter the commaint function and try it out.

Enter the addComplex and mkComplex functions and try them out.

- W

Try the standard functions fst x and snd x on complex values. What do £st and snd do?

5. Try out the Eliza application in /usr/local/hugs98/1ib/hugs/demos/Eliza.hs on lectura.

11

31 Homework...

e Write a Haskell function to check if a character is alphanumeric, i.e. a lower case letter, upper case
letter, or digit.

? isAlphaNum ’a’
True

? isAlphaNum ’1°
True

? isAlphaNum ’A’
True

? isAlphalNum ’;’
False

? isAlphaNum '@’
False

32 Homework...
e Define a Haskell exclusive-or function.

e0r :: Bool -> Bool -> Bool
eOrxy:...

? e0r True True
False

? e0r True False
True

? e0r False True
True

? e0r False False
False

33 Homework...

e Define a Haskell function charToInt which converts a digit like 8’ to its integer value 8. The value
of non-digits should be taken to be 0.

charToInt :: Char -> Int
charToInt ¢ = ---

? charToInt ’8’

8

? charTolInt ’0’
0

? charTolInt ’y’
0

12

