CSc 372 - Comparative Programming Languages

5 : Haskell - Function Definitions
Christian Collberg
Department of Computer Science
University of Arizona
collberg+372@gmail.com

Copyright © 2005 Christian Collberg
August 29, 2005

1 Defining Functions

- When programming in a functional language we have basically two techniques to choose from when defining a new function:

1. Recursion
2. Composition

- Recursion is often used for basic "low-level" functions, such that might be defined in a function library.
- Composition (which we will cover later) is used to combine such basic functions into more powerful ones.
- Recursion is closely related to proof by induction.

2 Defining Functions...

- Here's the ubiquitous factorial function:

```
fact :: Int -> Int
fact n = if n == 0 then
    1
    else
    n * fact (n-1)
```

- The first part of a function definition is the type signature, which gives the domain and range of the function:

```
fact :: Int -> Int
```

- The second part of the definition is the function declaration, the implementation of the function:

```
fact n = if n == 0 then ...
```


3 Defining Functions...

- The syntax of a type signature is
fun_name :: argument_types
fact takes one integer input argument and returns one integer result.
- The syntax of function declarations:
fun_name param_names = fun_body

4 Conditional Expressions

- if e_{1} then e_{2} else e_{3} is a conditional expression that returns the value of e_{2} if e_{1} evaluates to True. If e_{1} evaluates to False, then the value of e_{3} is returned. Examples:

```
if True then 5 else 6 }\quad=>
if False then 5 else 6 }\quad=>
if 1==2 then 5 else 6 }\quad=>
5 + if 1==1 then 3 else 2 }=>
```

- Note that this is different from Java's or C's if-statement, but just like their ternary operator ?::

```
int max = (x>y)?x:y;
```


5 Conditional Expressions...

- Example:

```
abs :: Int -> Int
abs n = if n>0 then n else -n
sign :: Int -> Int
sign n = if n<0 then -1 else
    if n==0 then 0 else 1
```

- Unlike in C and Java, you can't leave off the else-part!

6 Guarded Equations

- An alternative way to define conditional execution is to use guards:

```
abs :: Int -> Int
abs n | n>= 0 = n
    | otherwise = -n
sign :: Int -> Int
sign n| n<0 = -1
    | n==0 = 0
    | otherwise = 1
```

- The pipe symbol is read such that.
- otherwise is defined to be True.
- Guards are often easier to read - it's also easier to verify that you have covered all cases.

7 Defining Functions. . .

- fact is defined recursively, i.e. the function body contains an application of the function itself.
- The syntax of function application is: fun_name arg. This syntax is known as "juxtaposition".
- We will discuss multi-argument functions later. For now, this is what a multi-argument function application ("call") looks like:

```
fun_name arg_1 arg_2 ... arg_n
```

- Function application examples:

```
fact 1 }\quad=>
fact 5 }=>12
fact (3+2) }=>12
```


8 Multi-Argument Functions

- A simple way (but usually not the right way) of defining an multi-argument function is to use tuples:

```
add :: (Int,Int) -> Int
add (x,y) = x+y
> add (40,2)
42
```

- Later, we'll learn about Curried Functions.

9 The error Function

- error string can be used to generate an error message and terminate a computation.
- This is similar to Java's exception mechanism, but a lot less advanced.

```
f :: Int -> Int
f n = if n<0 then
    error "illegal argument"
    else if n <= 1 then
            1
    else
            n * f (n-1)
> f (-1)
Program error: illegal argument
```


10 Layout

- A function definition is finished by the first line not indented more than the start of the definition

```
myfunc :: Int -> Int
myfunc x = if x == 0 then
    O else 99
myfunc :: Int -> Int
            myfunc x = if x == 0 then
        O else 99
myfunc :: Int -> Int
myfunc x = if x == 0 then
O else 99
```

- The last two generate a Syntax error in expression when the function is loaded.

11 Function Application

- Function application ("calling a function with a particular argument") has higher priority than any other operator.
- In math (and Java) we use parenthses to include arguments; in Haskell no parentheses are needed.

```
> f a + b
means
```

```
> (f a) + b
```

since function application binds harder than plus.

12 Function Application...

- Here's a comparison between mathematical notations and Haskell:

Math	Haskell
$f(x)$	f x
$f(x, y)$	f x y
$f(g(x))$	$\mathrm{f} \quad \mathrm{g} \mathrm{x})$
$f(x, g(y))$	$\mathrm{f} \mathrm{x} \quad \mathrm{g} \mathrm{y})$
$f(x) g(y)$	$\mathrm{f} \times \mathrm{x} \times \mathrm{y}$

Recursive Functions

13 Simple Recursive Functions

- Typically, a recursive function definition consists of a guard (a boolean expression), a base case (evaluated when the guard is True), and a general case (evaluated when the guard is False).

```
fact n =
    if n == 0 then }\Leftarrow\mathrm{ guard
        1 \Leftarrow base case
    else
        n * fact (n-1) & general case
```


14 Simulating Recursive Functions

- We can visualize the evaluation of fact 3 using a tree view, box view, or reduction view.
- The tree and box views emphasize the flow-of-control from one level of recursion to the next
- The reduction view emphasizes the substitution steps that the hugs interpreter goes through when evaluating a function. In our notation boxed subexpressions are substituted or evaluated in the next reduction.
- Note that the Haskell interpreter may not go through exactly the same steps as shown in our simulations. More about this later.

15 Tree View of fact 3

- This is a Tree View of fact 3.
- We keep going deeper into the recursion (evaluating the general case) until the guard is evaluated to True.

16 Tree View of fact 3

- When the guard is True we evaluate the base case and return back up through the layers of recursion.

17 Box View of fact 3

18 Box View of fact 3...

fact 3

19 Box View of fact 3...

20 Reduction View of fact 3

```
fact 3 }
if 3 == 0 then 1 else 3 * fact (3-1) =>
if False then 1 else 3 * fact (3-1) }
3* fact (3-1) }
3* fact 2 }
3* if 2 == 0 then 1 else 2 * fact (2-1) =>
3* if False then 1 else 2 * fact (2-1) }
3* (2 * fact (2-1)) =>
3* (2 * fact 1) }
3*(2 * if 1 == 0 then 1 else 1 * fact (1-1))
    # ...
```


21 Reduction View of fact 3...

```
3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1)) #
3 * (2 * if False then 1 else 1 * fact (1-1)) }
3 * (2 * (1 * fact (1-1))) =>
3* (2 * (1 * fact 0)) =
3* (2* (1 * if 0 == 0 then 1 else 0 * fact (0-1))) }
3* (2 * (1 * if True then 1 else 0 * fact (0-1))) =>
3* (2* (1 * 1)) }
3* (2 * 1) }
3*2 
6
```


22 Recursion Over Lists

- In the fact function the guard was $n==0$, and the recursive step was fact ($n-1$). I.e. we subtracted 1 from fact's argument to make a simpler (smaller) recursive case.
- We can do something similar to recurse over a list:

1. The guard will often be $n==[$] (other tests are of course possible).
2. To get a smaller list to recurse over, we often split the list into its head and tail, head:tail.
3. The recursive function application will often be on the tail, f tail.

23 The length Function

In English:
The length of the empty list [] is zero. The length of a non-empty list S is one plus the length of the tail of S.

In Haskell:

```
len :: [Int] -> Int
len s = if s == [ ] then
    else
        1 + len (tail s)
```

- We first check if we've reached the end of the list $s==[$]. Otherwise we compute the length of the tail of s, and add one to get the length of s itself.

24 Reduction View of len $[5,6]$

```
len s = if s == [ ] then 0 else 1 + len (tail s)
len [5,6] }
    if [5,6]==[ ] then O else 1 + len (tail [5,6]) =>
    1 + len (tail [5,6]) =
    1 + len [6] }
    1 + (if [6]==[ ] then 0 else 1 + len (tail [6])) =>
    1 + (1 + len (tail [6])) }
    1 + (1 + len [ ]) }
    1 + (1 + (if [ ]==[ ] then 0 else 1+len (tail [ ]))) =>
    1+(1+0)) =>1 + 1 # 2
```


25 Tree View of len [5, 6, 7]

