
CSc 372 — Comparative Programming Languages

5 : Haskell — Function Definitions

Christian Collberg

Department of Computer Science

University of Arizona

collberg+372@gmail.com

Copyright c© 2005 Christian Collberg

August 29, 2005

1 Defining Functions

• When programming in a functional language we have basically two techniques to choose from when
defining a new function:

1. Recursion

2. Composition

• Recursion is often used for basic “low-level” functions, such that might be defined in a function library.

• Composition (which we will cover later) is used to combine such basic functions into more powerful
ones.

• Recursion is closely related to proof by induction.

2 Defining Functions. . .

• Here’s the ubiquitous factorial function:

fact :: Int -> Int

fact n = if n == 0 then

1

else

n * fact (n-1)

• The first part of a function definition is the type signature, which gives the domain and range of the
function:

fact :: Int -> Int

• The second part of the definition is the function declaration, the implementation of the function:

fact n = if n == 0 then · · ·

1

3 Defining Functions. . .

• The syntax of a type signature is

fun name :: argument types

fact takes one integer input argument and returns one integer result.

• The syntax of function declarations:

fun name param names = fun body

4 Conditional Expressions

• if e1 then e2 else e3 is a conditional expression that returns the value of e2 if e1 evaluates to True.
If e1 evaluates to False, then the value of e3 is returned. Examples:

if True then 5 else 6 ⇒ 5

if False then 5 else 6 ⇒ 6

if 1==2 then 5 else 6 ⇒ 6

5 + if 1==1 then 3 else 2 ⇒ 8

• Note that this is different from Java’s or C’s if-statement, but just like their ternary operator ?::

int max = (x>y)?x:y;

5 Conditional Expressions. . .

• Example:

abs :: Int -> Int

abs n = if n>0 then n else -n

sign :: Int -> Int

sign n = if n<0 then -1 else

if n==0 then 0 else 1

• Unlike in C and Java, you can’t leave off the else-part!

6 Guarded Equations

• An alternative way to define conditional execution is to use guards:

abs :: Int -> Int

abs n | n>= 0 = n

| otherwise = -n

sign :: Int -> Int

sign n| n<0 = -1

| n==0 = 0

| otherwise = 1

2

• The pipe symbol is read such that.

• otherwise is defined to be True.

• Guards are often easier to read — it’s also easier to verify that you have covered all cases.

7 Defining Functions. . .

• fact is defined recursively, i.e. the function body contains an application of the function itself.

• The syntax of function application is: fun name arg. This syntax is known as “juxtaposition”.

• We will discuss multi-argument functions later. For now, this is what a multi-argument function
application (“call”) looks like:

fun name arg 1 arg 2 · · · arg n

• Function application examples:

fact 1 ⇒ 1

fact 5 ⇒ 120

fact (3+2) ⇒ 120

8 Multi-Argument Functions

• A simple way (but usually not the right way) of defining an multi-argument function is to use tuples:

add :: (Int,Int) -> Int

add (x,y) = x+y

> add (40,2)

42

• Later, we’ll learn about Curried Functions.

9 The error Function

• error string can be used to generate an error message and terminate a computation.

• This is similar to Java’s exception mechanism, but a lot less advanced.

f :: Int -> Int

f n = if n<0 then

error "illegal argument"

else if n <= 1 then

1

else

n * f (n-1)

> f (-1)

Program error: illegal argument

3

10 Layout

• A function definition is finished by the first line not indented more than the start of the definition

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

• The last two generate a Syntax error in expression when the function is loaded.

11 Function Application

• Function application (“calling a function with a particular argument”) has higher priority than any
other operator.

• In math (and Java) we use parenthses to include arguments; in Haskell no parentheses are needed.

> f a + b

means

> (f a) + b

since function application binds harder than plus.

12 Function Application. . .

• Here’s a comparison between mathematical notations and Haskell:

Math Haskell
f(x) f x

f(x, y) f x y

f(g(x)) f (g x)

f(x, g(y)) f x (g y)

f(x)g(y) f x * g y

4

Recursive Functions

13 Simple Recursive Functions

• Typically, a recursive function definition consists of a guard (a boolean expression), a base case (eval-
uated when the guard is True), and a general case (evaluated when the guard is False).

fact n =

if n == 0 then ⇐ guard

1 ⇐ base case

else

n * fact (n-1) ⇐ general case

14 Simulating Recursive Functions

• We can visualize the evaluation of fact 3 using a tree view, box view, or reduction view.

• The tree and box views emphasize the flow-of-control from one level of recursion to the next

• The reduction view emphasizes the substitution steps that the hugs interpreter goes through when
evaluating a function. In our notation boxed subexpressions are substituted or evaluated in the next
reduction.

• Note that the Haskell interpreter may not go through exactly the same steps as shown in our simula-
tions. More about this later.

15 Tree View of fact 3

if 2==0 then 1
else 2 * fact (2−1)

if 1==0 then 1
else 1 * fact (1−1)

if 0==0 then 1
else ...

if 3==0 then 1
else 3 * fact (3−1)

fact 2

fact 1

fact 0

fact 3

• This is a Tree View of fact
3.

• We keep going deeper into
the recursion (evaluating
the general case) until the
guard is evaluated to True.

5

16 Tree View of fact 3

if 2==0 then 1
else 2 * fact (2−1)

if 1==0 then 1
else 1 * fact (1−1)

if 0==0 then 1
else ...

if 3==0 then 1
else 3 * fact (3−1)

fact 2

fact 1

fact 0
1

3*2=6

2*1=2

1*1=1

fact 3

• When the guard is True we
evaluate the base case and
return back up through the
layers of recursion.

17 Box View of fact 3

3

fact 3

False

2

fact 2

if

then

else

==

1

0

−

1

*

18 Box View of fact 3. . .

False

1

fact 1

if

then

else

==

1

0

−

1

*

fact 3

False

2

==

1

0

−

if

then

else

1

*

fact 2
3

6

19 Box View of fact 3. . .
fact 3

False

2

==

1

0

−

if

then

else

1

*

fact 2
False

1

fact 1

if

then

else

==

1

0

−

1

*

−

3

20 Reduction View of fact 3

fact 3 ⇒

if 3 == 0 then 1 else 3 * fact (3-1) ⇒

if False then 1 else 3 * fact (3-1) ⇒

3 * fact (3-1) ⇒

3 * fact 2 ⇒

3 * if 2 == 0 then 1 else 2 * fact (2-1)⇒

3 * if False then 1 else 2 * fact (2-1) ⇒

3 * (2 * fact (2-1)) ⇒

3 * (2 * fact 1) ⇒

3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1))

⇒ · · ·

21 Reduction View of fact 3. . .

3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1)) ⇒

3 * (2 * if False then 1 else 1 * fact (1-1)) ⇒

3 * (2 * (1 * fact (1-1))) ⇒

3 * (2 * (1 * fact 0)) ⇒

3 * (2 * (1 * if 0 == 0 then 1 else 0 * fact (0-1))) ⇒

3 * (2 * (1 * if True then 1 else 0 * fact (0-1))) ⇒

3 * (2 * (1 * 1)) ⇒

3 * (2 * 1) ⇒

3 * 2 ⇒

6

22 Recursion Over Lists

• In the fact function the guard was n==0, and the recursive step was fact(n-1). I.e. we subtracted 1
from fact’s argument to make a simpler (smaller) recursive case.

• We can do something similar to recurse over a list:

1. The guard will often be n==[] (other tests are of course possible).

2. To get a smaller list to recurse over, we often split the list into its head and tail, head:tail.

3. The recursive function application will often be on the tail, f tail.

7

23 The length Function

In English:
The length of the empty list [] is zero. The length of a non-empty list S is one plus the length
of the tail of S.

In Haskell:

len :: [Int] -> Int

len s = if s == [] then

0

else

1 + len (tail s)

• We first check if we’ve reached the end of the list s==[]. Otherwise we compute the length of the tail
of s, and add one to get the length of s itself.

24 Reduction View of len [5,6]

len s = if s == [] then 0 else 1 + len (tail s)

len [5,6] ⇒

if [5,6]==[] then 0 else 1 + len (tail [5,6]) ⇒

1 + len (tail [5,6]) ⇒

1 + len [6] ⇒

1 + (if [6]==[] then 0 else 1 + len (tail [6])) ⇒

1 + (1 + len (tail [6])) ⇒

1 + (1 + len []) ⇒

1 + (1 + (if []==[] then 0 else 1+len (tail []))) ⇒

1 + (1 + 0)) ⇒ 1 + 1 ⇒ 2

25 Tree View of len [5,6,7]

len [6,7]

len [7]

len []

1+2=3

1+0=1

len [5,6,7]

if [5,6,7]==[] then 0

if [6,7]==[] then 0

if [7]==[] then 0

if []==[] then 0
else ...

1+1=2

0

else 1 + len (tail [6,7])

else 1 + len (tail [7])

else 1 + len (tail [5,6,7])

len :: [Int] -> Int

len s = if s==[] then 0

else 1+len(tail s)

• Tree View of len [5,6,7]

8

