CSc 372 - Comparative Programming Languages

9 : Haskell - Curried Functions
Christian Collberg
Department of Computer Science
University of Arizona
collberg+372@gmail.com

Copyright © 2005 Christian Collberg
September 9, 2005

1 Declaring Infix Functions

- Sometimes it is more natural to use an infix notation for a function application, rather than the normal prefix one:
$-5+6$ (infix)
- (+) 56 (prefix)
- Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic.
- For each operator we need to specify its precedence and associativity. The higher precedence of an operator, the stronger it binds (attracts) its arguments: hence:

```
3 + 5*4 \equiv 3 + (5*4)
```


2 Declaring Infix Functions. . .

- The associativity of an operator describes how it binds when combined with operators of equal precedence. So, is

```
5-3+9 \equiv(5-3)+9 = 11
    OR
5-3+9 \equiv5-(3+9) = -7
```

The answer is that + and - associate to the left, i.e. parentheses are inserted from the left.

- Some operators are right associative: $5^{\wedge} 3^{\wedge} 2 \equiv 5^{\wedge}\left(3^{\wedge} 2\right)$
- Some operators have free (or no) associativity. Combining operators with free associativity is an error:

```
5 == 4< 3 { ERROR
```


3 Declaring Infix Functions. . .

- The syntax for declaring operators:

```
infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.
```

From the standard prelude:

```
infixl 7 *
infix 7 /, 'div', 'rem', 'mod`
infix 4 ==, /=, <, <=, >=, >
```

- An infix function can be used in a prefix function application, by including it in parenthesis. Example:
? (+) $5((*) 64)$
29

Multi-Argument Functions

4 Multi-Argument Functions

- Haskell only supports one-argument functions.
- An n-argument function $f\left(a_{1}, \cdots, a_{n}\right)$ is constructed in either of two ways:

1. By making the one input argument to f a tuple holding the n arguments.
2. By letting f "consume" one argument at a time. This is called currying.

Tuple	Currying
add $::$ (Int, Int)->Int	add $::$ Int->Int->Int
add $(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$	add $\mathrm{a} \mathrm{b}=\mathrm{a}+\mathrm{b}$

5 Currying

- Currying is the preferred way of constructing multi-argument functions.
- The main advantage of currying is that it allows us to define specialized versions of an existing function.
- A function is specialized by supplying values for one or more (but not all) of its arguments.
- Let's look at Haskell's plus operator (+). It has the type
(+) :: Int -> (Int -> Int).
- If we give two arguments to (+) it will return an Int:
(+) $53 \Rightarrow 8$

6 Currying. . .

- If we just give one argument (5) to (+) it will instead return a function which "adds 5 to things". The type of this specialized version of (+) is Int -> Int.
- Internally, Haskell constructs an intermediate - specialized - function:

```
add5 :: Int -> Int
add5 a = 5 + a
```

- Hence, (+) 53 is evaluated in two steps. First (+) 5 is evaluated. It returns a function which adds 5 to its argument. We apply the second argument 3 to this new function, and the result 8 is returned.

7 Currying. . .

- To summarize, Haskell only supports one-argument functions. Multi-argument functions are constructed by successive application of arguments, one at a time.
- Currying is named after logician Haskell B. Curry (1900-1982) who popularized it. It was invented by Schönfinkel in 1924. Schönfinkeling doesn't sound too good...
- Note: Function application ($\mathrm{f} x$) has higher precedence (10) than any other operator. Example:

```
f 5 + 1 & (f 5) + 1
f 5 6 < f 5) 6
```


8 Currying Example

- Let's see what happens when we evaluate f 345 , where f is a 3 -argument function that returns the sum of its arguments.

```
f :: Int -> (Int -> (Int -> Int))
f x y z = x + y + z
f 345 \equiv((f 3) 4) 5
```


9 Currying Example...

- (f 3) returns a function $f^{\prime} y \quad z(f$ ' is a specialization of f) that adds 3 to its next two arguments.
f $345 \equiv((f 3) 4) 5 \Rightarrow(f, 4) 5$
f, :: Int -> (Int -> Int)
f' $y z=3+y+z$

10 Currying Example...

- (f ' 4) (\equiv (f 3) 4) returns a function $f{ }^{\prime}$ ' $z(f$ ', is a specialization of f ') that adds ($3+4$) to its argument.
f $345 \equiv((f 3) 4) 5 \Rightarrow(f, 4) 5$ $\Rightarrow f{ }^{\prime}, 5$
f', :: Int -> Int f', $z=3+4+z$
- Finally, we can apply f'' to the last argument (5) and get the result:

```
f 345 \equiv((f 3) 4) 5 # (f, 4) 5
    f', 5 }=>3+4+5=>1
```


11 Currying Example

The Combinatorial Function:

- The combinatorial function $\binom{n}{r}$ " n choose r ", computes the number of ways to pick r objects from n.

$$
\binom{n}{r}=\frac{n!}{r!*(n-r)!}
$$

In Haskell:

```
comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))
? comb 5 3
    10
```


12 Currying Example...

```
comb :: Int -> Int -> Int
```

comb n $r=$ fact $n /($ fact $r * f a c t(n-r))$
comb $53 \Rightarrow$ (comb 5) $3 \Rightarrow$
comb $^{5} 3 \Rightarrow$
$120 /($ fact $3 *($ fact 5-3)) \Rightarrow
$120 /(6 *(f a c t-5-3)) \Rightarrow$
$120 /(6 *$ fact 2$) \Rightarrow$
$120 /(6 * 2) \Rightarrow$
$120 / 12 \Rightarrow$
10
comb $^{5} \mathrm{r}=120 /($ fact $\mathrm{r} *$ fact (5-r))

- comb ${ }^{5}$ is the result of partially applying comb to its first argument.

13 Associativity

- Function application is left-associative: $f a b=(f a) b \mid f a b \neq f(a b)$
- The function space symbol ' $->$ ' is right-associative:
$\mathrm{a}->\mathrm{b} \rightarrow \mathrm{c}=\mathrm{a}->(\mathrm{b}->\mathrm{c})$
$\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c} \neq(\mathrm{a} \rightarrow \mathrm{b})->\mathrm{c}$
- f takes an Int as argument and returns a function of type Int -> Int. g takes a function of type Int -> Int as argument and returns an Int:

```
f' :: Int -> (Int -> Int)
    |
f :: Int -> Int -> Int
    *
g :: (Int -> Int) -> Int
```


14 What's the Type, Mr. Wolf?

- If the type of a function f is

$$
\mathrm{t}_{1}->\mathrm{t}_{2}->\cdots->\mathrm{t}_{n}->\mathrm{t}
$$

- and f is applied to arguments

$$
\mathrm{e}_{1}:: \mathrm{t}_{1}, \mathrm{e}_{2}:: \mathrm{t}_{2}, \cdots, \mathrm{e}_{k}:: \mathrm{t}_{k},
$$

- and $\mathrm{k} \leq \mathrm{n}$
- then the result type is given by cancelling the types $\mathrm{t}_{1} \cdots \mathrm{t}_{k}$:

$$
t_{1}->t_{2}->\cdots \quad->t_{k}->\mathrm{t}_{k+1}->\cdots \quad->\mathrm{t}_{n}->\mathrm{t}
$$

- Hence, $f \quad e_{1} \quad e_{2} \cdots e_{k}$ returns an object of type

$$
\mathrm{t}_{k+1}->\cdots->\mathrm{t}_{n} \rightarrow \mathrm{t} .
$$

- This is called the Rule of Cancellation.

15 Homework

- Define an operator $\$ \$$ so that x \$\$ xs returns True if x is an element in xs , and False otherwise.

[^0]
[^0]: Example:
 ? 4 \$\$ $[1,2,5,6,4,7]$
 True
 ? 4 \$\$ [1, 2, 3, 5]
 False
 ? 4 \$\$ []
 False

