CSc 372 — Comparative Programming Languages

9 : Haskell — Curried Functions

Christian Collberg
Department of Computer Science
University of Arizona
collberg+3720gmail.com

Copyright (© 2005 Christian Collberg

September 9, 2005

1 Declaring Infix Functions

e Sometimes it is more natural to use an infix notation for a function application, rather than the normal
prefix one:

— 5 + 6 (infix)
— (+) 5 6 (prefix)

e Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic.

e For each operator we need to specify its precedence and associativity. The higher precedence of an
operator, the stronger it binds (attracts) its arguments: hence:

3 + 5%¥4 = 3 + (5%4)
3 +5%4 # (3+5) x4

2 Declaring Infix Functions. ..

e The associativity of an operator describes how it binds when combined with operators of equal prece-
dence. So, is

5-3+9 = (5-3)+9
OR
5-3+9 = 5-(3+9)

11

=7
The answer is that + and - associate to the left, i.e. parentheses are inserted from the left.
e Some operators are right associative: 57372 = 57(372)

e Some operators have free (or no) associativity. Combining operators with free associativity is an error:

5==4<3 = ERROR



3 Declaring Infix Functions...

e The syntax for declaring operators:

infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.

From the standard prelude:

infixl 7 *
infix 7 /, ‘div‘, ‘rem‘, ‘mod‘
infix 4 ==, /=, <, <=, >=, >

e An infix function can be used in a prefix function application, by including it in parenthesis. Example:

7 (#) 5 ((x) 6 4)
29



Multi-Argument Functions

4 Multi-Argument Functions
e Haskell only supports one-argument functions.
e An n-argument function f(ay,--- ,a,) is constructed in either of two ways:

1. By making the one input argument to f a tuple holding the n arguments.

2. By letting f “consume” one argument at a time. This is called currying.

Tuple | Currying
add :: (Int,Int)->Int | add :: Int->Int->Int
add (a, b) = a + b add ab=a+b

5 Currying
e Currying is the preferred way of constructing multi-argument functions.
e The main advantage of currying is that it allows us to define specialized versions of an existing function.
e A function is specialized by supplying values for one or more (but not all) of its arguments.
e Let’s look at Haskell’s plus operator (+). It has the type
(+) :: Int -> (Int -> Int).

o If we give two arguments to (+) it will return an Int:

(+) 53 =8

6 Currying...

e If we just give one argument (5) to (+) it will instead return a function which “adds 5 to things”. The
type of this specialized version of (+) is Int -> Int.

e Internally, Haskell constructs an intermediate — specialized — function:

add5 :: Int -> Int
addb a = 5 + a

e Hence, (+) 5 3 is evaluated in two steps. First (+) 5 is evaluated. It returns a function which adds
5 to its argument. We apply the second argument 3 to this new function, and the result 8 is returned.



7 Currying...

e To summarize, Haskell only supports one-argument functions. Multi-argument functions are con-
structed by successive application of arguments, one at a time.

e Currying is named after logician Haskell B. Curry (1900-1982) who popularized it. It was invented by
Schonfinkel in 1924. Schonfinkeling doesn’t sound too good...

e Note: Function application (f x) has higher precedence (10) than any other operator. Example:

+ 1 & (£6) +1
6 & (£ 5) 6

£5
£5
8 Currying Example

e Let’s see what happens when we evaluate £ 3 4 5, where f is a 3-argument function that returns the
sum of its arguments.

f :: Int -> (Int -> (Int -> Int))
fxyz=x+y+z

f345=((f3)4)5

9 Currying Example...
e (f 3) returns a function £’ y z (£’ is a specialization of f) that adds 3 to its next two arguments.
f345=((f3)4) 5= (f” 4 5
f2 :: Int -> (Int -> Int)
f7yz=3+y+z
10 Currying Example...

e (£’ 4) (= (£ 3) 4) returns a function £’’z (£’ is a specialization of £’) that adds (34+4) to its
argument.

£f345= (34 5= (f” 45
= £’ 5

£’ :: Int -> Int
f°? z=3+4 + 2z

e Finally, we can apply £’ to the last argument (5) and get the result:

£f345=(f3) 4 5= (f" 45
= £’ 5 = 3+4+5 = 12



11 Currying Example

The Combinatorial Function:
e The combinatorial function (:) “n choose 1”7, computes the number of ways to pick r objects from n.

In Haskell:

comb :: Int -> Int -> Int
comb n r = fact n/(fact rxfact(n-r))

? comb 5 3
10

12 Currying Example...

comb :: Int -> Int -> Int
comb n r = fact n/(fact rx*fact(n-r))

comb 5 3 = (comb 5) 3 =
comb® 3 =
120 / (fact 3 * (fact 5-3)) =
120 / (6 * (fact 5-3)) =
120 / (6 * fact 2) =
120 / (6 * 2) =
120 / 12 =
10

comb? r = 120 / (fact r * fact(5-r))

e comb® is the result of partially applying comb to its first argument.

13 Associativity
e Function application is left-associative: f a b = (f a) b ‘ fab#f (ab)

e The function space symbol ‘->° is right-associative:

a->b->c=a-> (b ->c)
a->b->c# (a->b) >c

e f takes an Int as argument and returns a function of type Int -> Int. g takes a function of type Int
-> Int as argument and returns an Int:

f2 :: Int -> (Int -> Int)
(3

f :: Int -> Int -> Int
¥

g :: (Int -> Int) -> Int



14 What’s the Type, Mr. Wolf?

e If the type of a function f is

ty => tg > -0 > t, >t
e and f is applied to arguments

ey::ty, egiity, -+, epiity,

e andk<n

e then the result type is given by cancelling the types t1 -+ tg:

/tl -> /ﬁg => . => /("k => tpp1 > - > t, >t
e Hence, f e; ey --- e returns an object of type
thtr1 => -0 > t, > T.

e This is called the Rule of Cancellation.

15 Homework
e Define an operator $$ so that x $$ xs returns True if x is an element in xs, and False otherwise.
Example:

? 4 $$ [1,2,5,6,4,7]
True

? 4 %$$ [1,2,3,5]
False

7?7 4 $$ [

False



