CSc 372

Comparative Programming Languages

1: Introduction

Christian Collberg

collberg+372@gmail.com

Department of Computer Science
University of Arizona

Copyright © 2005 Christian Collberg

Why learn programming languages?

- In this class we will study three languages: Prolog, Haskell, and Icon.
- There are several reasons why you would want to learn a large number of languages:
 - 1. There will always be new languages used in industry. Recently, we've gone from C to Ada to C++ to Java and (maybe) to C#. Every computer scientist should be ready to make this change.
 - 2. Learning a new programming paradigm teaches you new ways to solve problems.

Functional Programming (FP)

- Functional programming is a way to program in a more "mathematical" way.
- An FP program consists of a collection of simple functions which are combined into more complex functions, which are combined..., etc.
- FP programs are easier to reason about mathematically than imperative (C) or object-oriented programs.
- We are going to study Haskell, one of the more popular modern FP languages.

Logic Programming (FP)

- Logic programming is a way to program using ideas from logic, such as first order predicate calculus.
- There really is only one well-know language in this class, Prolog, and that is what we will study.
- Prolog allows you to solve some very complex problems very easily.

String Processing

- Icon is a string processing language developed here at the UofA.
- Icon is really a general purpose imperative language, but it has some very powerful ways of manipulating strings.
- Other, more modern, languages in this class are Perl, Python, Tcl, and Ruby.
- These languages are used more and more in real applications, since writing a Perl program is often much faster than writing the equivalent Java/C/C++ program.

A Preview

3 Languages — A Preview

You Are Not Supposed to Understand This Lecture!!!

yet...

Hello World (Prolog)

The file hello.pl

```
hello:-
write('Hello World!'), nl.
```

Loading and running

```
> gprolog
| ? — ['hello.pl'].
| ? — hello.
Hello World!
yes
| ? —
```

Hello World (Haskell)

```
The file hello.gh
```

```
main = putStr ("Hello World")
```

Loading and running

```
Main > : load hello.gh
Main > main
Hello World
Main >
```

> hugs

Hello World (Icon)

The file hello.icn

```
procedure main()
    write("Hello World!")
end
```

Compiling and running

```
> icont hello.icn
> hello
Hello World!
```

Hello World (Java)

```
class Hello {
    String message;
    Hello(String message) {
         this.message = message;
    void sayit() {
        System.out.println(message);
    public static void main(String[] args) {
        Hello myHello = new Hello("Hello World");
        myHello.sayit();
```

Repeating Hello World (Prolog)

The file hello.pl

```
hello2(0).
hello2(N):-
N>0,
write('Hello World!'), nl,
N1 is N - 1,
hello2(N1).
```

Loading and running

```
> gprolog
| ? - ['hello.pl'].
| ? - hello2(2).
Hello World!
Hello World!
```

Repeating Hello World (Haskell)

The file hello.gh

```
main n = putStr (unlines (take n (repeat "Hello World!")))
```

Loading and running

```
> hugs

Main > : load hello.gh

Main > main 2

Hello World!

Hello World!
```

- repeat "Hello World!" generates an infinite list of strings.
- \blacksquare take n [...] takes the first n elements of a list, and throws away the rest.
- unlines [...] concatenates a list of strings into one string.

Repeating Hello World (Icon)

The file hello.icn

```
procedure hello(n)
    every i := 1 to n do
        write("Hello World!")
end

procedure main()
    hello(2)
end
```

Compiling and running

```
> icont hello.icn
> hello
Hello World!
Hello World!
```

3 Languages — A Preview

Remember...

You Are Not Supposed to Understand This Lecture!!!

yet...

...but you will need to know it all for the final!

Readings and References

Hello World! in over two hundred languages:

http://www2.latech.edu/~acm/HelloWorld.shtml.

Homework

- Go to the 372 web page and browse around the information about the different languages.
- If you own your own computer, download and install the different compilers/interpreters.
- Try to run the examples in this lecture, on your own machine, on lectura, or on the Windows machines in the lab.

Summary

- In this class we will study three languages: Prolog, Haskell, and Icon.
- Haskell is a functional programming languages.
- Prolog is a logic programming language.
- Icon is a string processing language.