T T e Sttt o = ~= TS

CSc 372

Comparative Programming
L anguages
12 : Haskell — Composing Functions

Christian Collberg

col | berg+372@nmai | . com

Department of Computer Science

University of Arizona

Copyright (©) 2005 Christian Collberg

372 —Fall 2005 — 12 [1]

collberg+372@gmail.com

Composing Functions

We want to discover frequently occurring patterns of
computation. These patterns are then made into (often
higher-order) functions which can be specialized and
combined. map f Landfilter f L can be specialized
and combined:

double :: [Int] ->[Int]

double xs = map ((*) 2) Xxs

positive :: [Int] -> [Int]
positive xs = filter ((<) 0) xs

doubl ePos xs = map ((*) 2) (filter ((<) 0) xs)

? doublePos [2,3,0,-1, 5]
[4, 6, 10]

372 —Fall 2005 — 12 [2]

Composing Functions...

T e e———

Functional composition is a kind of “glue” that is used to
“stick” simple functions together to make more powerful
ones.

In mathematics the ring symbol (o) is used to compose
functions:

(fog)(x)=f(g(x))

In Haskell we use the dot (". ") symbol:

| nfixr 9 .
(.) :: (b->c) -> (a->b) -> (a->c)
(f . 9)(x) =1(9(x))

372 —Fall 2005 — 12 [3]

Composing Functions...

= e e e, et

(.) :: (b->) -> (a->b) -> (a->c)
(f . 9)(x) =1(9(x))
f . g
a | a b cC|lc
—= 9 |—= f [
" " takes two functions f and g as arguments, and

returns a new function h as result.
g is a function of type a- >b.
f 1s a function of type b- >c.

e o o

h is a function of type a- >c.

°

(f.g)(x) Isthe same as z=g(x) followed by f (z).

372 —Fall 2005 — 12 [4]

Composing Functions...

= e e e, et

We use functional composition to write functions more
concisely. These definitions are equivalent:

doit x = f1 (f2 (f3 (f4 x)))
doit x = (f1 . f2 . 3. f4) x
doit =f1 . f2 . f3. f4

The last form of doit is preferred. doi t 's arguments are
implicit; it has the same parameters as the composition.

doit can be used in higher-order functions (the second
form Is preferred):

? map (doit) Xs
? mp (f1 . 2. 3. f4) xs

372 —Fall 2005 — 12 [5]

Example Spllttlng Llnes

Assume that we have a function fi | | that splits a
string into filled lines:

fill :: string -> [string]
fill s = splitLines (splitWrds s)

o fill firstsplits the string into words (using
spl it Wr ds) and then into lines:

splitWwrds :: string -> [word]
splitLines :: [word] -> [lIne]

We canrewrite fil |l using function composition:

fill = splitLines . splitWrds

372 —Fall 2005 — 12 [6]

Precedence & ASSOCI at|V|ty

_ e R e

1. "." Isright associative. l.e.
f. ghi-j = ft.(g9.(h.(1.7)))
2. ' has higher precedence (binding power) than any

other operator, except function application:
5+f.g6 =5+ (f. (g 6))

3. "." Is associative:
f . (g. h) =(f . g) . nh
4. "1 d" 1s"."’sidentity element,l.eid . f =f =
| d:
I1d :: a -> a
ld X = X

372 —Fall 2005 — 12 [7]

Thecount Function

s s St o o e

® Define a function count which counts the number of
lists of length n in a list L:

count 2 [[1],[]1.[2,3],[4,5],[]] = 2
Using recursion:

count :: Int ->[[a]] -> Int

count _[] =0

count n (Xx:XS)
| length x == n 1 + count n Xs
| ot herw se count n Xxs

Using functional composition:
count’ n =length . filter (==n) . map length

372 —Fall 2005 — 12 [8]

The count Functi on. ..

count” n =length . filter (==n) . map length

® \What does count’ do?

[[11.01.12,3].[4 3], []]

¢ map | ength
[1,0, 2, 2, 0]
! filter (==2)
[2, 2]
¢ | engt h
2
Note that
count’ n xs = length (filter (==n) (map | ength xs))

372 —Fall 2005 — 12 [9]

Thel n| t & | ast Functlons

= T e——

| ast returns the last element of a list.
| nit returns everything but the last element of a list.

Definitions:
| ast = head . rever se
lNnit = reverse . tail . rever se
Simulations:
rever se head

[1,2,3] "=77[3,2,1] =

reverse t al reverse

[1, 2, 3] [3,2,1] = [2,1] [1, 2]

372 —Fall 2005 — 12 [10]

Theany Function

® any p xsreturnsTrueifp x == True for some X In
XS

any ((==)0) [1,2,3,0,5] = True
any ((==)0) [1,2,3,4] = Fal se

Using recursion:

any :: (a -> Bool) ->[a] -> Bool
any _ [] = Fal se
any p (x:xs) =| p x = True

| otherw se = any p Xs
Using composition:
any p = . map p
[1,0,3]rTHp ((£)0) [Fal se, Tr ue, False]::>True

372 —Fall 2005 — 12 [11]

conmmai nt Revisited. ..

= e e e, et

Let’s have another look at one simple (!) function,
commai nt .

conmai nt works on strings, which are simply lists of
characters.

You are ROt now supposed to understand this!

From the commai nt documentation:

[conmai nt] takes a single string argument
containing a sequence of digits, and outputs the
same sequence with commas inserted after every
group of three digits, - - -

372 —Fall 2005 — 12 [12]

conmai nt Revisited. ..

Sample interaction:
? commai nt "1234567"

1, 234, 567
conmal nt in Haskell:
commuaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse

where group n = takeWiile (not.null)
map (take n).iterate (drop n)

372 —Fall 2005 — 12 [13]

corrmal nt Rev|3|ted

B~ T e e

"1234567"
+ reverse
"7654321"
l iterate (drop 3) ?
['7654321","4321","1","","", ...] o
¢ map (take 3) u
P
["765","432","1","","",...]
takeWhile (not.null) 3

['765", "432", "1"]

¢ foldrl (\X y—>x++","++y)
"765,432,1"

+ reverse
"1,234,567"

372 —Fall 2005 — 12 [14]

corrmal nt Rev|3|ted

R T T TR RS

commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWiile (not.null)
map (take n).iterate (drop n)

® iterate (drop 3) s returns the infinite list of strings

[s, drop 3 s, drop 3 (drop 3 s),
drop 3 (drop 3 (drop 3 s)), ---]

map (take n) xss shortens the lists in xss ton
elements.

372 —Fall 2005 — 12 [15]

corrmal nt Rev|3|ted

R T T TR RS

commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWiile (not.null)
map (take n).iterate (drop n)

o takeWiile (not.null) removes all empty strings
from a list of strings.

o foldrl (\x y->x++","++y) s takes a list of strings
s as input. It appends the strings together, inserting a
comma in between each pair of strings.

372 —Fall 2005 — 12 [16]

L ambda Expressions

® (\x y->x++","++y) Is called a lambda expression.

Lambda expressions are simply a way of writing (short)
functions inline. Syntax:

\ argunents -> expression
#® Thus, conmai nt could just as well have been written as

commaint = foldrl iInsert
where group n = --.
lnsert x y = x++" " ++y

Examples:

squareAll xs = map (\ X -> X * X) XS
length = foldl” (\n _ ->n+l1l) O

372 —Fall 2005 — 12 [17]

Summary

ST YT e ot

The built-in operator " . " (pronounced “compose”)
takes two functions f and g as argument, and returns a
new function h as result.

#® The new functionh = f . g combines the behavior
of f and g: applying h to an argument a is the same as
first applying g to a, and then applying f to this result.

Operators can, of course, also be composed: ((+2)
(*3)) 3willreturn2 + (3 * 3) = 11.

372 —Fall 2005 — 12 [18]

Homework

e e Seta ot o Sy

Ty e

o Write a function m d xs which returns the list xs
without its first and last element.

1. use recursion
2. useinit,tail,andfunctional composition.
3. usereverse,tail,andfunctional composition.

md[1,2 3 4,5 = [23,4]
md[] = ERROR
md[1] = ERRCR
md[1,3] = []

N)) N

372 —Fall 2005 — 12 [19]

	Composing Functions
	Composing Functionsldots
	Composing Functionsldots
	Composing Functionsldots
	Example: Splitting Lines
	Precedence & Associativity
	The {	t count} Function
	The {	t count} Functionldots
	The {	t init} & {	t last} Functions
	The {	t any} Function
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	Lambda Expressions
	Summary
	Homework

