
372 —Fall 2005 — 12

CSc 372

Comparative Programming
Languages

12 : Haskell — Composing Functions

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com


372 —Fall 2005 — 12

Composing Functions

We want to discover frequently occurring patterns of
computation. These patterns are then made into (often
higher-order) functions which can be specialized and
combined. map f L and filter f L can be specialized
and combined:
double :: [Int] -> [Int]
double xs = map ((*) 2) xs

positive :: [Int] -> [Int]
positive xs = filter ((<) 0) xs

doublePos xs = map ((*) 2) (filter ((<) 0) xs)
? doublePos [2,3,0,-1,5]
[4, 6, 10]

[2]



372 —Fall 2005 — 12

Composing Functions. . .

Functional composition is a kind of “glue” that is used to
“stick” simple functions together to make more powerful
ones.

In mathematics the ring symbol (◦) is used to compose
functions:

(f ◦ g)(x) = f(g(x))

In Haskell we use the dot (".") symbol:

infixr 9 .
(.) :: (b->c) -> (a->b) -> (a->c)
(f . g)(x) = f(g(x))

[3]



372 —Fall 2005 — 12

Composing Functions. . .

(.) :: (b->c) -> (a->b) -> (a->c)
(f . g)(x) = f(g(x))

g f

f . g

a a ccb

"." takes two functions f and g as arguments, and
returns a new function h as result.

g is a function of type a->b.

f is a function of type b->c.

h is a function of type a->c.

(f.g)(x) is the same as z=g(x) followed by f(z).

[4]



372 —Fall 2005 — 12

Composing Functions. . .

We use functional composition to write functions more
concisely. These definitions are equivalent:

doit x = f1 (f2 (f3 (f4 x)))
doit x = (f1 . f2 . f3 . f4) x
doit = f1 . f2 . f3 . f4

The last form of doit is preferred. doit’s arguments are
implicit; it has the same parameters as the composition.

doit can be used in higher-order functions (the second
form is preferred):

? map (doit) xs
? map (f1 . f2 . f3 . f4) xs

[5]



372 —Fall 2005 — 12

Example: Splitting Lines

Assume that we have a function fill that splits a
string into filled lines:

fill :: string -> [string]
fill s = splitLines (splitWords s)

fill first splits the string into words (using
splitWords) and then into lines:

splitWords :: string -> [word]
splitLines :: [word] -> [line]

We can rewrite fill using function composition:

fill = splitLines . splitWords

[6]



372 —Fall 2005 — 12

Precedence & Associativity

1. "." is right associative. I.e.
f.g.h.i.j = f.(g.(h.(i.j)))

2. "." has higher precedence (binding power) than any
other operator, except function application:
5 + f.g 6 = 5 + (f. (g 6))

3. "." is associative:

f . (g . h) = (f . g) . h

4. "id" is "."’s identity element, i.e id . f = f = f
. id:

id :: a -> a
id x = x

[7]



372 —Fall 2005 — 12

The count Function

Define a function count which counts the number of
lists of length n in a list L:

count 2 [[1],[],[2,3],[4,5],[]] ⇒ 2

Using recursion:
count :: Int -> [[a]] -> Int
count [] = 0
count n (x:xs)

| length x == n = 1 + count n xs
| otherwise = count n xs

Using functional composition:
count’ n = length . filter (==n) . map length

[8]



372 —Fall 2005 — 12

The count Function. . .

count’ n = length . filter (==n) . map length

What does count’ do?

[1,0,2,2,0]

filter (==2)

length
[2,2]

map length

[[1],[],[2,3],[4,5],[]]

2

Note that

count’ n xs = length (filter (==n) (map length xs))
[9]



372 —Fall 2005 — 12

The init & last Functions

last returns the last element of a list.

init returns everything but the last element of a list.

Definitions:
last = head . reverse

init = reverse . tail . reverse

Simulations:

[1,2,3]
reverse

=⇒ [3,2,1]
head
=⇒ 3

[1,2,3]
reverse

=⇒ [3,2,1]
tail
=⇒ [2,1]

reverse
=⇒ [1,2]

[10]



372 —Fall 2005 — 12

The any Function

any p xs returns True if p x == True for some x in
xs:

any ((==)0) [1,2,3,0,5] ⇒ True
any ((==)0) [1,2,3,4] ⇒ False

Using recursion:
any :: (a -> Bool) -> [a] -> Bool
any [] = False
any p (x:xs) = | p x = True

| otherwise = any p xs

Using composition:
any p = or . map p

[1,0,3]
map ((==)0)

=⇒ [False,True,False]
or
=⇒True

[11]



372 —Fall 2005 — 12

commaint Revisited. . .

Let’s have another look at one simple (!) function,
commaint.

commaint works on strings, which are simply lists of
characters.

You are not\\\ now supposed to understand this!

From the commaint documentation:

[commaint] takes a single string argument
containing a sequence of digits, and outputs the
same sequence with commas inserted after every
group of three digits, · · ·

[12]



372 —Fall 2005 — 12

commaint Revisited. . .

Sample interaction:
? commaint "1234567"

1,234,567

commaint in Haskell:
commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse
where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

[13]



372 —Fall 2005 — 12

commaint Revisited. . .

g

r

o

u

p

3

iterate (drop 3)

map (take 3)

foldr1 (\x y−>x++","++y)

"765,432,1"

["765", "432", "1"]

takeWhile (not.null)

"7654321"

["7654321","4321","1","","", ...]

["765","432","1","","",...]

"1,234,567"

"1234567"
reverse

reverse

[14]



372 —Fall 2005 — 12

commaint Revisited. . .

commaint = reverse . foldr1 (\x y->x++","++y) .
group 3 . reverse
where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

iterate (drop 3) s returns the infinite list of strings

[s, drop 3 s, drop 3 (drop 3 s),
drop 3 (drop 3 (drop 3 s)), · · ·]

map (take n) xss shortens the lists in xss to n
elements.

[15]



372 —Fall 2005 — 12

commaint Revisited. . .

commaint = reverse . foldr1 (\x y->x++","++y) .
group 3 . reverse
where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

takeWhile (not.null) removes all empty strings
from a list of strings.

foldr1 (\x y->x++","++y) s takes a list of strings
s as input. It appends the strings together, inserting a
comma in between each pair of strings.

[16]



372 —Fall 2005 — 12

Lambda Expressions

(\x y->x++","++y) is called a lambda expression.
Lambda expressions are simply a way of writing (short)
functions inline. Syntax:

\ arguments -> expression

Thus, commaint could just as well have been written as

commaint = · · · . foldr1 insert . · · ·
where group n = · · ·

insert x y = x++","++y

Examples:
squareAll xs = map (\ x -> x * x) xs
length = foldl’ (\n -> n+1) 0

[17]



372 —Fall 2005 — 12

Summary

The built-in operator "." (pronounced “compose”)
takes two functions f and g as argument, and returns a
new function h as result.

The new function h = f . g combines the behavior
of f and g: applying h to an argument a is the same as
first applying g to a, and then applying f to this result.

Operators can, of course, also be composed: ((+2) .
(*3)) 3 will return 2 + (3 * 3) = 11.

[18]



372 —Fall 2005 — 12

Homework

Write a function mid xs which returns the list xs
without its first and last element.
1. use recursion
2. use init, tail, and functional composition.
3. use reverse, tail, and functional composition.

? mid [1,2,3,4,5] ⇒ [2,3,4]
? mid [] ⇒ ERROR
? mid [1] ⇒ ERROR
? mid [1,3] ⇒ []

[19]


	Composing Functions
	Composing Functionsldots 
	Composing Functionsldots 
	Composing Functionsldots 
	Example: Splitting Lines
	Precedence & Associativity
	The {	t count} Function
	The {	t count} Functionldots 
	The {	t init} & {	t last} Functions
	The {	t any} Function
	{	t commaint} Revisitedldots 
	{	t commaint} Revisitedldots 
	{	t commaint} Revisitedldots 
	{	t commaint} Revisitedldots 
	{	t commaint} Revisitedldots 
	Lambda Expressions
	Summary
	Homework

