
372 —Fall 2005 — 14

CSc 372

Comparative Programming
Languages

14 : Haskell — Lazy Evaluation

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com


372 —Fall 2005 — 14

Lazy evaluation

Haskell evaluates expressions using a technique called
lazy evaluation:
1. No expression is evaluated until its value is needed.
2. No shared expression is evaluated more than once;

if the expression is ever evaluated then the result is
shared between all those places in which it is used.

Lazy functions are also called non-strict and evaluate
their arguments lazily or by need.

C functions and Java methods are strict and evaluate
their arguments eagerly .

[2]



372 —Fall 2005 — 14

Don’t Evaluate Until Necessary

The first of these ideas is illustrated by the following
function:

ignoreArgument x = "I didn’t evaluate x"

Since the result of the function ignoreArgument
doesn’t depend on the value of its argument x , that
argument will not be evaluated:

$ hugs +s
> ignoreArgument (1/0)
I didn’t evaluate x
(246 reductions, 351 cells)

[3]



372 —Fall 2005 — 14

Don’t Evaluate Until Necessary. . .

The function seq forces strict evaluation when that is
necessary:

> seq ignoreArgument (1/0)
Inf
(32 reductions, 78 cells)

[4]



372 —Fall 2005 — 14

Evaluate Shared Expressions Once

The second basic idea behind lazy evaluation is that no
shared expression should be evaluated more than once.

For example, the following two expressions can be used
to calculate 3 ∗ 3 ∗ 3 ∗ 3:

$ hugs +s
> square*square where square = 3*3
81
(30 reductions, 67 cells)
> (3*3)*(3*3)
81
(34 reductions, 45 cells)

[5]



372 —Fall 2005 — 14

Evaluate Shared Expressions Once. . .

Notice that the first expression requires fewer reduction
than the second.

A reduction is the basic step of evaluating a Haskell
expression, by applying a function to its argument.

[6]



372 —Fall 2005 — 14

Saving Reductions

Consider these sequences of reductions:

square * square where square = 3 * 3
-- calculate the value of square by
-- reducing 3*3==>9 and replace each
-- occurrence of square with this result
==> 9 * 9
==> 81

(3 * 3) * (3 * 3) -- evaluate first (3*3)
==> 9 * (3 * 3) -- evaluate second (3*3)
==> 9 * 9
==> 81

Lazy evaluation means that only the minimum amount
of calculation is used to determine the result of an
expression.

[7]



372 —Fall 2005 — 14

Taking the Minimum

Consider the task of finding the smallest element of a
list of integers.

> minimum [100,99..1]
1
(2355 reductions, 3211 cells)

[100,99..1] denotes the list of integers from 1 to 100
arranged in decreasing order.

Instead, we could first sort and then take the head of
the result:

> :load List
> sort [100,99..1]
[1, 2, 3, 4, 5, 6, 7, 8, ..., 99, 100]
(3430 reductions, 8234 cells)

[8]



372 —Fall 2005 — 14

Taking the Minimum. . .

However, thanks to lazy evaluation, calculating just the
first element of the sorted list actually requires less
work in this particular case than the first solution using
minimum :

> head (sort [100,99..1])
1
(1877 reductions, 3993 cells)

> minimum [100,99..1]
1
(2355 reductions, 3211 cells)

[9]



372 —Fall 2005 — 14

Infinite data structures

Lazy evaluation makes it possible for functions in
Haskell to manipulate ‘infinite’ data structures.

The advantage of lazy evaluation is that it allows us to
construct infinite objects piece by piece as necessary

The function ones below generates an infinite list of 1s:

ones = 1 : ones

> take 10 ones
[1,1,1,1,1,1,1,1,1,1]
(277 reductions, 389 cells)

[10]



372 —Fall 2005 — 14

Infinite data structures. . .

Consider the following function which can be used to
produce infinite lists of integer values:

countFrom n = n : countFrom (n+1)

> countFrom 1
[1, 2, 3, 4, 5, 6, 7, 8,ˆCInterrupted!]

[11]



372 —Fall 2005 — 14

Infinite data structures. . .

For practical applications, we are usually only interested
in using a finite portion of an infinite data structure.

We can find the sum of the integers 1 to 10:

> sum (take 10 (countFrom 1))
55
(278 reductions, 440 cells)

take n xs evaluates to a list containing the first n
elements of the list xs .

[12]



372 —Fall 2005 — 14

Infinite data structures. . .

Infinite data structures enable us to describe an object
without being tied to one particular application of that
object.

The following definitions for infinite list of powers of two
[1, 2, 4, 8, . . . ]:

powersOfTwo = 1 : map double powersOfTwo
where double n = 2*n

> take 10 powersOfTwo
[1,2,4,8,16,32,64,128,256,512]

[13]



372 —Fall 2005 — 14

Infinite data structures. . .

xs!!n evaluates to the n:th element of the list xs .

We can define a function to find the nth power of 2 for
any given integer n:

powersOfTwo = 1 : map (*2) powersOfTwo

twoToThe n = powersOfTwo !! n

> twoToThe 5
32

[14]



372 —Fall 2005 — 14

Fibonacci

Here’s a definition of a function that generates an
infinite list of all the fibonacci numbers:
fib = 1:1:[a+b| a,b <-zip fib (tail fib)]

> take 10 fib
[1,1,2,3,5,8,13,21,34,55]

[15]



372 —Fall 2005 — 14

Acknowledgements

These slides were derived mostly from the Gofer
manual.

Functional programming environment, Version
2.20
c© Copyright Mark P. Jones 1991.

[16]


	Lazy evaluation
	Don't Evaluate Until Necessary
	Don't Evaluate Until Necessaryldots 
	Evaluate Shared Expressions Once
	Evaluate Shared Expressions Onceldots 
	Saving Reductions
	Taking the Minimum
	Taking the Minimumldots 
	Infinite data structures
	Infinite data structuresldots 
	Infinite data structuresldots 
	Infinite data structuresldots 
	Infinite data structuresldots 
	Fibonacci
	Acknowledgements

