T T e Sttt o = ~= TS

CSc 372

Comparative Programming
Languages
15 : Haskell — Exercises

Christian Collberg

col | berg+372@nmai | . com

Department of Computer Science

University of Arizona

Copyright (©) 2005 Christian Collberg

372 —Fall 2005 — 15 [1]

collberg+372@gmail.com

Lis_t Prefix

T e e———

Write a recursive function begi n xs ys that returns
true if xs Is a prefix of ys. Both lists are lists of integers.
Include the type signature.

> begin [] []

True

> begin [1] []

Fal se

> pegin [1,2] [1, 2,3, 4]
True

> pbegin [1,2] [1,1, 2, 3, 4]
Fal se

> pbegin [1,2,3,4] [1, 2]

372 —Fall 2005 — 15 [2]

Llst Contamment

Write a recursive function subsequence xs ys that
returns true if xs occurs anywhere within ys. Both lists
are lists of integers. Include the type signature.

Hint: reuse begi n from the previous exercise.

> subsequence [] []

True

> subsequence [1] []

Fal se

> subsequence [1] [0, 1, 0]

True

> subsequence [1,2,3] [0,1,0,1, 2, 3, 5]
True

372 —Fall 2005 — 15 [3]

Mystery

T e e———

Consider the following function:

nystery :: [a] -> [[a]]

nystery [] = [[]]

nystery (X:Xs) = sets ++ (map (X:) sets)
where sets = nystery Xs

What would nystery [1, 2] return? nystery
[1,2,3]7

What does the funtion compute?

372 —Fall 2005 — 15 [4]

foldr

e —— T - SEmesT -

Explain what the following expressions involving f ol dr
do:

1. foldr (:) [] xs
2. foldr (:) Xs ys
3. foldr (y ys ->ys ++ [y]) [] xs

372 —Fall 2005 — 15 [5]

shorter

= e — 3 e .

Define a function short er xs ys that returns the
shorter of two lists.

> shorter [1,2] [1]

[1]

> shorter [1,2] [1, 2, 3]
[1, 2]

372 —Fall 2005 — 15 [6]

stripEmpty

e Sttt o ot

Write function st ri pEnpt y xs that removes all empty
strings from xs, a list of strings.

> stripEnmpty ["", "Hello", "", ", "World!"]
["Hel 10", "Wor | d! "]

> stripEmpty [""]
[]
> stripeEnpty []
[]

372 —Fall 2005 — 15 [7]

merge

Write function mer ge xs ys that takes two ordered
lists xs and ys and returns an ordered list containing
the elements from xs and ys, without duplicates

> nmerge [1, 2] [3,4]

[1, 2, 3, 4]

> nmerge [1, 2,3] [3, 4]
[1, 2, 3, 4]

> nmerge [1,2] [1, 2, 4]
[1, 2, 4]

372 —Fall 2005 — 15 [8]

Function Composition

e s St ey

#® Rewrite the expression
mep f (map g Xs)
so that only a single call to map is used

372 —Fall 2005 — 15 [9]

Reduce

ST YT e ot

o Letthe Haskell function reduce be defined by

Y
f x (reduce f xs v)

reduce f [] Y
reduce f (Xx:xs) v

Reconstruct the Haskell functions length, append, filter,
and map using reduce. More precisely, complete the
following schemata (in the simplest possible way):

nyl engt h xs = reduce Xxs
nyappend Xxs ys = reduce XS
nyfilter p xs = reduce xs
nymap f Xs = reduce XxXs

372 —Fall 2005 — 15 [10]

372 Midterm 2004 — Problem 1

Write a non-recursive function
|l nvert :: [Bool] -> [Bool]

that turns all Tr ue values into Fal se, and Fal se
values into Tr ue. Example:

> [nvert [True, Fal se]
| Fal se, True]

372 —Fall 2005 — 15 [11]

372 Midterm 2004 — Problem 2

Write a non-recursive function count p xs that takes
a predicate p and a list xs of elements (of arbitrary

type) as arguments and returns the number of elements
In the list that satisfies p:

> count even [1, 2, 3,4, 5]
2

|deally, you should define the function using

composition of higher-order functions from the standard
prelude!

372 —Fall 2005 — 15 [12]

372 Midterm 2004 — Problem 3

T e e———

Write a non-recursive function bl end xs ys that takes
two lists of elements (of arbitrary type) as argument,

and returns a list where the elements have been taken
alternatingly from xs and ys:

> pblend [1, 2,3] [4,5, 6]
[1,4, 2,5, 3, 6]

You can assume that xs and ys are of the same length.

372 —Fall 2005 — 15 [13]

372 Midterm 2004 — Problem 4

Write a function adj pai r s that takes a list as argument
and returns the list of all pairs of adjacent elements.
Examples:

> adj pairs []
[]

> adj pairs [1]
[]
> adj pairs [1, 2]

[(1,2)]

> adjpairs [1, 2, 3]

[(1,2),(2,3)]

> adjpairs [1,2,3,4,5, 6]

[(1,2), (2,3), (3,4), (4,5), (5 6)]

® Give both a recursive and a non-recursive solution!

372 —Fall 2005 — 15 [14]

372 Midterm 2004 — Problem 5

T e e———

\Write a non-recursive function section f ¢ xs that
extracts a sublist of the list xs starting at position f and
which is ¢ elements long. Use 0-based indexing.
Assume that xs has at least f +c elements. Examples:

> section 01 [1,2,3,4,5]
1]

> section 0 3 [1,2,3,14,5]
1, 2, 3]

> section 1 3 [1,2,3,14,5]
[2, 3, 4]

> section 4 1 [1,2,3,4,5]

[5]

372 —Fall 2005 — 15 [15]

372 Midterm 2004 — Problem 6

® Given these Haskell function definitions

duh :: [Int] ->1Int -> [[Int]]
duh xs a = duh’ xs a []

duh [] _ [] =[]
duh’ [] _ xs = [xs]
duh’ (x:xs) a ys
a == X = nut ys (duh’ xs a [])
ot herw se = duh’ xs a (ys ++ [X])
nut [] xs = Xxs
nut XS ys = XS : VyS

372 —Fall 2005 — 15 [16]

372 I\/Iiglterm 2004 — Pro_lgﬁlemj6. -

= e e e, et

answer these questions:

1. Whatistheresultofnut [] [[1,2]]7

2. Whatistheresultofnut [2] [[1,2]]7
3. What is the most general type of nut ?

4. What is theresultofduh [1, 2, 3] 17

5. Whatistheresultofduh [1, 2,3,1,4] 17

372 —Fall 2005 — 15 [17]

372 Midterm 2004 — Problem 7

T e e———

What are the results of these Haskell expressions?
1. filter p[[1],[1,2],[1,2,3],[1,2,3,4]]

where p xs = length xs > 2
2. filter (not . even . length) xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]
3. foldr (\ xs 1 ->1length xs + 1) 0 xs

where xs = [[1],[1,2],[1,2,3],[1, 2,3, 4]]

4. iterate 1d 1
5. (fst. head . zip [1,2,3]) [4,5, 6]

372 —Fall 2005 — 15 [18]

372 Final 2004 — Problem 1

= e e e, et

® Given these Haskell function definitions

nystery :: [a] -> [[a]]
nystery xs = [take n xs,drop n Xxs]

where n = h Xxs
n . [a] -> Int
n [] =0
n [] =0
N (_: _:Xxs) =1 + h xs

what does the expression
nmystery [1, 2, 3, 4, 5]
return?

372 —Fall 2005 — 15 [19]

372 Final 2004 — Problem 2

1. What is referential transparency? lllustrate with an lIcon
procedure and a Haskell function.

2. Haskell is a lazy language. What does this mean?

372 —Fall 2005 — 15 [20]

	List Prefix
	List Containment
	Mystery
	foldr
	shorter
	stripEmpty
	merge
	Function Composition
	Reduce
	372 Midterm 2004 -- Problem 1
	372 Midterm 2004 -- Problem 2
	372 Midterm 2004 -- Problem 3
	372 Midterm 2004 -- Problem 4
	372 Midterm 2004 -- Problem 5
	372 Midterm 2004 -- Problem 6
	372 Midterm 2004 -- Problem 6ldots
	372 Midterm 2004 -- Problem 7
	372 Final 2004 -- Problem 1
	372 Final 2004 -- Problem 2

