
372 —Fall 2005 — 2

CSc 372

Comparative Programming
Languages

2 : Functional Programming

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com

372 —Fall 2005 — 2

Programming Paradigms

During the next few weeks we are going to work with
functional programming. Before I can explain to you
what FP is, I thought I’d better put things into
perspective by talking about other
programming paradigms.

Over the last 40 or so years, a number of programming
paradigms (a programming paradigm is a way to think
about programs and programming) have emerged.

[2]

372 —Fall 2005 — 2

Programming Paradigms. . .

A programming paradigm

is a way to think about programs, programming, and
problem solving,

is supported by one or more programming languages.

Being familiar with several paradigms makes you a better
programmer and problem solver. The most popular
paradigms:

1. Imperative programming.

2. Functional programming.

3. Object-oriented programming.

4. Logic Programming.

When all you have is a hammer, everything looks like a nail.
[3]

372 —Fall 2005 — 2

Programming Paradigms. . .

Imperative Programming
Programming with state.

Also known as procedural programming. The first to
emerge in the 1940s-50s. Still the way most people
learn how to program.

FORTRAN, Pascal, C, BASIC.

Functional Programming

Programming with values.

Arrived in the late 50s with the LISP language. LISP is
still popular and widely used by AI people.

LISP, Miranda, Haskell, Gofer.

[4]

372 —Fall 2005 — 2

Programming Paradigms. . .

Object-Oriented Programming
Programming with objects that encapsulate data and
operations.

A variant of imperative programming first introduced
with the Norwegian language Simula in the mid 60s.

Simula, Eiffel, Modula-3, C++.

Logic Programming

Programming with relations.

Introduced in the early 70s. Based on predicate
calculus. Prolog is popular with Computational
Linguists.

Prolog, Parlog.
[5]

372 —Fall 2005 — 2

Procedural Programming

We program an abstraction of the Von Neumann Machine,
consisting of a store (memory), a program (kept in the
store), A CPU and a program counter (PC):

store

PC

CPU

Addresses Data

X:

Program: PC := PC + 8;

X := X + 1

53 Jump

Store

Update

Computing x:=x+1

1. Compute x’s address,
send it to the store,
get x’s value back.

2. Add 1 to x’s value.

3. Send x’s address and
new value to the store
for storage.

4. Increment PC.

[6]

372 —Fall 2005 — 2

Procedural Programming. . .

The programmer...
uses control structures (IF, WHILE, ...) to alter the
program counter (PC),

uses assignment statements to alter the store.

is in charge of memory management , i.e. declaring
variables to hold values during the computation.

� �

function f a c t (n : integer) : integer ;
var s , i : integer : = 1 ;
begin

while i <=n do s := s∗ i ; i := i + 1 ; end ;
r e t u r n s ;

end f a c t .
� �

[7]

372 —Fall 2005 — 2

Procedural Programming. . .

Procedural programming is difficult because:

1. A procedural program can be in a large number of
states. (Any combination of variable values and PC
locations constitutes a possible state.) The programmer
has to keep track of all of them.

2. Any global variable can be changed from any location in
the program. (This is particularly true of languages like
C & C++ [Why?]).

3. It is difficult to reason mathematically about a
procedural program.

[8]

372 —Fall 2005 — 2

Functional Programming

[9]

372 —Fall 2005 — 2

Functional Programming

In contrast to procedural languages, functional programs
don’t concern themselves with state and memory locations.
Instead, they work exclusively with values, and
expressions and functions which compute values.

Functional programming is not tied to the von Neumann
machine.

It is not necessary to know anything about the
underlying hardware when writing a functional program,
the way you do when writing an imperative program.

Functional programs are more declarative than
procedural ones; i.e. they describe what is to be
computed rather than how it should be computed.

[10]

372 —Fall 2005 — 2

Functional Languages

Common characteristics of functional programming
languages:

1. Simple and concise syntax and semantics.

2. Repetition is expressed as recursion rather than
iteration.

3. Functions are first class objects . I.e. functions can be
manipulated just as easily as integers, floats, etc. in
other languages.

4. Data as functions. I.e. we can build a function on the
fly and then execute it. (Some languages).

[11]

372 —Fall 2005 — 2

Functional Languages. . .

5. Higher-order functions. I.e. functions can take
functions as arguments and return functions as results.

6. Lazy evaluation. Expressions are evaluated only when
needed. This allows us to build infinite data structures,
where only the parts we need are actually constructed.
(Some languages).

7. Garbage Collection. Dynamic memory that is no longer
needed is automatically reclaimed by the system. GC is
also available in some imperative languages (Modula-3,
Eiffel) but not in others (C, C++, Pascal).

[12]

372 —Fall 2005 — 2

Functional Languages. . .

8. Polymorphic types. Functions can work on data of
different types. (Some languages).

9. Functional programs can be more easily
manipulated mathematically than procedural programs.

Pure vs. Impure FPL

Some functional languages are pure, i.e. they contain
no imperative features at all. Examples: Haskell,
Miranda, Gofer.

Impure languages may have assignment-statements,
goto:s, while-loops, etc. Examples: LISP, ML, Scheme.

[13]

372 —Fall 2005 — 2

Specifying Functions

[14]

372 —Fall 2005 — 2

What is a function?

A function maps argument values (inputs) to result
values (outputs).

A function takes argument values from a source set (or
domain).

A function produces result values that lie in a target set
(or range).

Capital
USA

Sweden

NZ Stockholm

Washington DC

Wellington

Copenhagen

Source (Domain) Function Target (Range)

[15]

372 —Fall 2005 — 2

More on functions

A function must not map an input value to
more than one output value. Example:

IsPrettyJenny

True

False

not a

function !

[16]

372 —Fall 2005 — 2

More on functions. . .

If a function F maps every element in the domain to
some element in the range, then F is total . I.e. a total
function is defined for all arguments.

Plus
Int

Int
Int

[17]

372 —Fall 2005 — 2

More on functions. . .

A function that is undefined for some inputs, is called
partial .

Int

Int
IntDivide

Divide is partial since ?

0
=? is undefined.

[18]

372 —Fall 2005 — 2

Specifying functions

A function can be specified extensionally or intentionally .
Extensionally:

Enumerate the elements of the (often infinite) set of
pairs “(argument, result)” or
“Argument 7→ Result.”

The extensional view emphasizes the external behavior
(or specification), i.e. what the function does, rather
than how it does it.

double = {· · ·, (1,2), (5,10), · · · }
even = {· · ·, (0,True), (1,False), · · · }
double = {· · ·, 17→2, 57→10, · · · }
isHandsome={Chris7→True,Hugh7→False}

[19]

372 —Fall 2005 — 2

Specifying functions. . .

Intensionally:
Give a rule (i.e. algorithm) that computes the result
from the arguments.

The intentional view emphasizes the process (or
algorithm) that is used to compute the result from the
arguments.

double x = 2 * x
even x = x mod 2 == 0
isHandsome x = if isBald x

then True
else False

[20]

372 —Fall 2005 — 2

Specifying functions. . .

Graphically:
The graphical view is a notational variant of the
intentional view.

even

even

or

eithereven

[21]

372 —Fall 2005 — 2

Function Application

The most important operation in a functional program is
function application, i.e. applying an input argument to
the function, and retrieving the result:

double x = 2 * x
even x = x mod 2 == 0

double 5 ⇒ 10
even 6 ⇒ True

[22]

372 —Fall 2005 — 2

Function Composition

Function composition makes the result of one function
application the input to another application:

double x = 2 * x
even x = x mod 2 == 0

even (double 5) ⇒ even 10 ⇒ True

[23]

372 —Fall 2005 — 2

Function Definition — Example

Example: How many numbers are there between m and n,
inclusive?

Extensional Definition:
sumbetween m n = {· · · (1, 1) 7→ 1, (1, 2) 7→ 2, · · · , (2, 10) 7→ 9}

Intentional Definition:
sumbetween m n = ((m + n) * (abs (m-n) + 1)) div 2

Graphical Definition:

− abs

1

+

*

div

2

+
m

n

sumbetween

[24]

372 —Fall 2005 — 2

Function Signatures

To define a function we must specify the types of the input
and output sets (domain and range, i.e. the function’s
signature), and an algorithm that maps inputs to outputs.

The Signature!

*

2

doubleint int

==

0

mod

2

evenint Bool

[25]

372 —Fall 2005 — 2

What’s so Good About FP?

[26]

372 —Fall 2005 — 2

Referential Transparency

The most important concept of functional programming
is referential transparency. Consider the expression

(2 ∗ 3) + 5 ∗ (2 ∗ 3)

(2 ∗ 3) occurs twice in the expression, but it
has the same meaning (6) both times.

RT means that the value of a particular expression (or
sub-expression) is always the same, regardless of
where it occurs.

This concept occurs naturally in mathematics, but is
broken by imperative programming languages.

RT makes functional programs easier to reason about
mathematically.

[27]

372 —Fall 2005 — 2

Referential Transparency. . .

Consider this Java expression:
� �

f () + f ()
� �

Could we replace it by the expression
� �

2∗ f ()
� �

If this was mathematics, we could! But, in Java. . .

[28]

372 —Fall 2005 — 2

Referential Transparency. . .

If our definition of f() was
� �

i n t f () {
return 5 ;

}
� �

then f()+f() and 2*f() both mean the same.

But, if f() is
� �

i n t X=5;
i n t f () {

X++;
return X;

}
� �

then f()+f()=6*7=42 and 2*f()=2*6=36 !
[29]

372 —Fall 2005 — 2

Referential Transparency. . .

What about these two Java expression:
� �

f () + g ()
� �

and
� �

g () + f ()
� �

Are they equivalent? In math they are. . .

[30]

372 —Fall 2005 — 2

Referential Transparency. . .

But, Java isn’t math:
� �

i n t X=5;
i n t f () {

X++;
return X;

}
i n t g () {

return X;
}

� �

then f()+g()=6+6=12 and g()+f()=5+6=11 !

[31]

372 —Fall 2005 — 2

Referential Transparency. . .

Because of such side-effects, Java isn’t referentially
transparent.

The same is true of any procedural language (Pascal,
C, Modula-2, etc) and object-oriented language (Java,
C++, C#).

[32]

372 —Fall 2005 — 2

Referential Transparency. . .

Pure functional programming languages are
referentially transparent.

This means that it is easy to find the meaning (value) of
an expression.

We can evaluate it by substitution. I.e. we can replace
a function application by the function definition itself.

[33]

372 —Fall 2005 — 2

Referential Transparency. . .

Evaluate even (double 5) :
double x = 2 * x
even x = x mod 2 == 0

even (double 5) ⇒
even (2 * 5) ⇒
even 10 ⇒
10 mod 2 == 0 ⇒
0 == 0 ⇒ True

[34]

372 —Fall 2005 — 2

Referential Transparency. . .

In a pure functional language

1. Expressions and sub-expressions always have the
same value, regardless of the environment in which
they’re evaluated.

2. The order in which sub-expressions are evaluated
doesn’t effect the final result.

3. Functions have no side-effects.

4. There are no global variables.

[35]

372 —Fall 2005 — 2

Referential Transparency. . .

5. Variables are similar to variables in mathematics: they
hold a value, but they can’t be updated.

6. Variables aren’t (updatable) containers the way they are
imperative languages.

7. Hence, functional languages are much more like
mathematics than imperative languages. Functional
programs can be treated as mathematical text, and
manipulated using common algebraic laws.

[36]

372 —Fall 2005 — 2

Homework

Here is a mathematical definition of the combinatorial
function

(

n

r

)

“n choose r”, which computes the number
of ways to pick r objects from n:

(

n

r

)

=
n!

r! ∗ (n − r)!

Give an extensional, intentional, and graphical definition
of the combinatorial function, using the notations
suggested in this lecture.

You may want to start by defining an auxiliary function
to compute the factorial function, n! = 1 ∗ 2 ∗ · · · ∗ n.

[37]

	Programming Paradigms
	Programming Paradigmsldots
	Programming Paradigmsldots
	Programming Paradigmsldots
	Procedural Programming
	Procedural Programmingldots
	Procedural Programmingldots
	Functional Programming
	Functional Programming
	Functional Languages
	Functional Languagesldots
	Functional Languagesldots
	Specifying Functions
	What is a function?
	More on functions
	More on functionsldots
	More on functionsldots
	Specifying functions
	Specifying functionsldots
	Specifying functionsldots
	Function Application
	Function Composition
	Function Definition --- Example
	Function Signatures
	What's so Good About FP?
	Referential Transparency
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Referential Transparencyldots
	Homework

