
372 —Fall 2005 — 31

CSc 372

Comparative Programming
Languages

31 : Icon — Data Structures

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com

372 —Fall 2005 — 31

Data Structures

Icon has built-in support for records, lists, tables, and
sets.

These data structures can be freely combined, so that it
is easy to construct a list of tables of sets,

[2]

372 —Fall 2005 — 31

Records

[3]

372 —Fall 2005 — 31

Records

Records and procedures are the only declarations in
Icon. They must be declared at the outermost (global)
level:

record name(field1,field2,...)

You don’t give the types of the fields, just their names.

type(X) , where X is a record variable, will return the
name (a string) of the record type.

If R is a record variable, R.field1 references the field
whose name is field1 .

[4]

372 —Fall 2005 — 31

Complex Arithmetic Module

record complex(re, im)

procedure add(a,b)
return complex(a.re+b.re, a.im+b.im)

end

procedure main ()
local x, r, i
x := complex(5, 4)
y := complex(1,2)
z := add(x,y)

r := z.re # or r := z[1]
i := z.im # or r := z[2]
t := type(z) # t="complex"

end [5]

372 —Fall 2005 — 31

Lists

[6]

372 —Fall 2005 — 31

Lists

Lists are a built-in Icon datatype. Lists can be accessed
from the beginning (the way you would in LISP, Prolog,
etc), the end, or indexed (the way you would access an
array in Pascal).

Lists can be heterogeneous, they can contain elements
of different type.

x := ["hello",1,3.14,"x","y"] A list of a string, an
integer, a float, and two strings.

y := list(5, "hej") A list of five strings:
["hej",...,"hej"] .

x[2:4] The list consisting of the second, third, and fourth
element of x .

[7]

372 —Fall 2005 — 31

Lists vs. Strings

Lists are indexed in the same way as strings:

[”h”, 42]

↑ ↑ ↑

1 2 3

Strings are immutable. This means that when you
assign to an element of a string you actually get a new
string as result.

Lists are mutable. That is, when you assign to an
element of a list, the list actually changes.

[8]

372 —Fall 2005 — 31

List Operations

s := list() Create an empty list.

s := list(n) Create a list of n null s.

s := list(n,v) Create a list of n vs.

s := *x Number of elements of x .

x ||| y Concatenate x and y .

!x Generate all elements of the list, in order, as in every
X := !L do write(X) .

[9]

372 —Fall 2005 — 31

Examples

][L := list(5,10);
r1 := L1:[10,10,10,10,10] (list)

][L[2] := 42;
][L;

r3 := L1:[10,42,10,10,10]
][L := [1,2,3,4,5];
][L[1:3];

r5 := L1:[1,2]
][L[0:-3];

r6 := L1:[3,4,5]
][every i := !L do write(i);
1
2
3
4
5 [10]

372 —Fall 2005 — 31

List Operations. . .

x ||| y Concatenate x and y .

put(x, 67) Add 67 to the end of the list x .

get(x) Remove and return the last element of x .

push(x, 1024) Add a new element to the beginning of x .

pop(x) Remove and return the first element of x .

!x Generate all elements of the list, in order, as in every
X := !L do write(X) .

?x Return a random element from list.

x===y Succeed if x and y are the same string.

x˜===y Succeed if x and y are different strings.

[11]

372 —Fall 2005 — 31

Examples

][L := [[1,2],[3,4],[5,6]];
][L[2,1] := 42;
][L;

r3 := L1:[L2:[1,2],L3:[42,4],L4:[5,6]]
][x := pop(L);
][x;

r5 := L1:[1,2] (list)
][L;

r6 := L1:[L2:[42,4],L3:[5,6]]
][L := [1,2,3,4,5];
][every !L :=: ?L;
][L;

r9 := L1:[2,1,5,3,4]

[12]

372 —Fall 2005 — 31

Fibonacci

procedure main()
n := 20
f := [1,1]
repeat {

i := get(f)
if i>n then break
write(i)
put(f,i+f[1])

}
end

[13]

372 —Fall 2005 — 31

Prime Sieve

procedure main()
n := 100
p := list(n,1)
every i := 2 to sqrt(n) do

if p[i]=1 then
every j := i+i to n by i do

p[j] := 0
every i := 2 to n do

if p[i]=1 then
write(i)

end

[14]

372 —Fall 2005 — 31

Tables

[15]

372 —Fall 2005 — 31

Tables

Tables are associative arrays, they map keys to values.
Both values and keys can be of arbitrary type.

[16]

372 —Fall 2005 — 31

Table Operations

Tables are associative arrays, they map keys to values.
Both values and keys can be of arbitrary type.

x:=table(0) Create a new table x whose default value is
0. This means that if you look up a key which has no
correspoding value, 0 is returned.

*x Number of elements in the table.

?x An arbitrary element from the table.

keys(x) Generate all keys in x , one at a time.

!x Generate all values, one at a time.

every X := keys(T) do
write(X, " ==> ", T[X])

[17]

372 —Fall 2005 — 31

Examples

x["monkey"] := "banana"

x[3.14] := "pi"

x["pi"] := 3.14

x["pi"] +:= 1 Increment pi by 1

r := x["coconut"] r will be 0

member(x, 3.14) returns "pi"

member(x, "banana") fails

insert(x, "banana", 5) x["banana"] := 5

delete(x, "monkey") remove "monkey"

every m := key(x) do write(m) write keys

every m := !x do write(m) write values

[18]

372 —Fall 2005 — 31

Sets

[19]

372 —Fall 2005 — 31

Sets

Sets are unordered collections of elements.

set() creates an empty set.

set(L) creates a set from a list of elements.

All the standard set-operations (intersection, etc.) are
built-in.

[20]

372 —Fall 2005 — 31

Set Operations

x := set([5, 3, "monkey"]) Create a 3-element set
from a list.

member(x, 5) returns 5

member(x, "banana") fails

insert(x, "banana") add "banana" to x

delete(x, 5) returns the set {3, "banana",
"monkey" }

*x number of elements (3)

?x random element from x

!x generate the elements

[21]

372 —Fall 2005 — 31

Set Operations

S := S1 op S2 set union (op=++), intersection (op=**),
difference (op=--).

while insert(S, read(f)) Read elements from file f
into set S

[22]

372 —Fall 2005 — 31

Prime Sieve

procedure main()
n := 100
p := set()
every i:=2 to n do insert(p,i)
every i := 2 to sqrt(n) &

member(p,i) &
j := i+i to n by i do

delete(p,j)
every i := 2 to n & member(p,i) do

write(i)
end

[23]

372 —Fall 2005 — 31

Binary Trees

[24]

372 —Fall 2005 — 31

Binary Trees in Icon

link ximage
record node (item,left,right)
procedure Preorder (T)

if \T then {
write(T.item);
Preorder(T.left); Preorder(T.right) }

end

procedure main()
t := node(1, node(2, &null, &null),

node(3, &null,
node(4, &null, &null)))

Preorder(t); xdump(t)
end

[25]

372 —Fall 2005 — 31

Binary Trees in Icon. . .

> icont b
> b
1
2
3
4
R node 4 := node()

R node 4.item := 1
R node 4.left := R node 1 := node()

R node 1.item := 2
R node 4.right := R node 3 := node()

R node 3.item := 3
R node 3.right := R node 2 := node()

R node 2.item := 4

[26]

372 —Fall 2005 — 31

Readings and References

Read Christopher, pp 29--34,105--126 .

[27]

372 —Fall 2005 — 31

Acknowledgments

Some material on these slides has been modified from
Thomas W Christopher’s Icon Programming Language
Handbook,
http://www.tools-of-computing.com/tc/CS/iconprog.pd f .

[28]

http://www.tools-of-computing.com/tc/CS/iconprog.pdf

	Data Structures
	Records
	Records
	Complex Arithmetic Module
	Lists
	Lists
	Lists vs. Strings
	List Operations
	Examples
	List Operationsldots
	Examples
	Fibonacci
	Prime Sieve
	Tables
	Tables
	Table Operations
	Examples
	Sets
	Sets
	Set Operations
	Set Operations
	Prime Sieve
	Binary Trees
	Binary Trees in Icon
	Binary Trees in Iconldots
	Readings and References
	Acknowledgments

