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Data Structures

Icon has built-in support for records, lists, tables, and
sets.

These data structures can be freely combined, so that it
is easy to construct a list of tables of sets, . . . .
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Records
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Records

Records and procedures are the only declarations in
Icon. They must be declared at the outermost (global)
level:

record name(field1,field2,...)

You don’t give the types of the fields, just their names.

type(X) , where X is a record variable, will return the
name (a string) of the record type.

If R is a record variable, R.field1 references the field
whose name is field1 .
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Complex Arithmetic Module

record complex(re, im)

procedure add(a,b)
return complex(a.re+b.re, a.im+b.im)

end

procedure main ()
local x, r, i
x := complex(5, 4)
y := complex(1,2)
z := add(x,y)

r := z.re # or r := z[1]
i := z.im # or r := z[2]
t := type(z) # t="complex"

end [5]
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Lists
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Lists

Lists are a built-in Icon datatype. Lists can be accessed
from the beginning (the way you would in LISP, Prolog,
etc), the end, or indexed (the way you would access an
array in Pascal).

Lists can be heterogeneous, they can contain elements
of different type.

x := ["hello",1,3.14,"x","y"] A list of a string, an
integer, a float, and two strings.

y := list(5, "hej") A list of five strings:
["hej",...,"hej"] .

x[2:4] The list consisting of the second, third, and fourth
element of x .

[7]
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Lists vs. Strings

Lists are indexed in the same way as strings:

[ ”h”, 42 ]

↑ ↑ ↑

1 2 3

Strings are immutable. This means that when you
assign to an element of a string you actually get a new
string as result.

Lists are mutable. That is, when you assign to an
element of a list, the list actually changes.

[8]



372 —Fall 2005 — 31

List Operations

s := list() Create an empty list.

s := list(n) Create a list of n null s.

s := list(n,v) Create a list of n vs.

s := *x Number of elements of x .

x ||| y Concatenate x and y .

!x Generate all elements of the list, in order, as in every
X := !L do write(X) .

[9]
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Examples

][ L := list(5,10);
r1 := L1:[10,10,10,10,10] (list)

][ L[2] := 42;
][ L;

r3 := L1:[10,42,10,10,10]
][ L := [1,2,3,4,5];
][ L[1:3];

r5 := L1:[1,2]
][ L[0:-3];

r6 := L1:[3,4,5]
][ every i := !L do write(i);
1
2
3
4
5 [10]
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List Operations. . .

x ||| y Concatenate x and y .

put(x, 67) Add 67 to the end of the list x .

get(x) Remove and return the last element of x .

push(x, 1024) Add a new element to the beginning of x .

pop(x) Remove and return the first element of x .

!x Generate all elements of the list, in order, as in every
X := !L do write(X) .

?x Return a random element from list.

x===y Succeed if x and y are the same string.

x˜===y Succeed if x and y are different strings.

[11]
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Examples

][ L := [[1,2],[3,4],[5,6]];
][ L[2,1] := 42;
][ L;

r3 := L1:[L2:[1,2],L3:[42,4],L4:[5,6]]
][ x := pop(L);
][ x;

r5 := L1:[1,2] (list)
][ L;

r6 := L1:[L2:[42,4],L3:[5,6]]
][ L := [1,2,3,4,5];
][ every !L :=: ?L;
][ L;

r9 := L1:[2,1,5,3,4]

[12]
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Fibonacci

procedure main()
n := 20
f := [1,1]
repeat {

i := get(f)
if i>n then break
write(i)
put(f,i+f[1])

}
end

[13]
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Prime Sieve

procedure main()
n := 100
p := list(n,1)
every i := 2 to sqrt(n) do

if p[i]=1 then
every j := i+i to n by i do

p[j] := 0
every i := 2 to n do

if p[i]=1 then
write(i)

end

[14]



372 —Fall 2005 — 31

Tables
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Tables

Tables are associative arrays, they map keys to values.
Both values and keys can be of arbitrary type.

[16]
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Table Operations

Tables are associative arrays, they map keys to values.
Both values and keys can be of arbitrary type.

x:=table(0) Create a new table x whose default value is
0. This means that if you look up a key which has no
correspoding value, 0 is returned.

*x Number of elements in the table.

?x An arbitrary element from the table.

keys(x) Generate all keys in x , one at a time.

!x Generate all values, one at a time.

every X := keys(T) do
write(X, " ==> ", T[X])

[17]
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Examples

x["monkey"] := "banana"

x[3.14] := "pi"

x["pi"] := 3.14

x["pi"] +:= 1 Increment pi by 1

r := x["coconut"] r will be 0

member(x, 3.14) returns "pi"

member(x, "banana") fails

insert(x, "banana", 5) x["banana"] := 5

delete(x, "monkey") remove "monkey"

every m := key(x) do write(m) write keys

every m := !x do write(m) write values

[18]
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Sets
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Sets

Sets are unordered collections of elements.

set() creates an empty set.

set(L) creates a set from a list of elements.

All the standard set-operations (intersection, etc.) are
built-in.

[20]
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Set Operations

x := set([5, 3, "monkey"]) Create a 3-element set
from a list.

member(x, 5) returns 5

member(x, "banana") fails

insert(x, "banana") add "banana" to x

delete(x, 5) returns the set {3, "banana",
"monkey" }

*x number of elements (3)

?x random element from x

!x generate the elements

[21]
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Set Operations

S := S1 op S2 set union (op=++), intersection (op=** ),
difference (op=-- ).

while insert(S, read(f)) Read elements from file f
into set S

[22]
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Prime Sieve

procedure main()
n := 100
p := set()
every i:=2 to n do insert(p,i)
every i := 2 to sqrt(n) &

member(p,i) &
j := i+i to n by i do

delete(p,j)
every i := 2 to n & member(p,i) do

write(i)
end

[23]
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Binary Trees
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Binary Trees in Icon

link ximage
record node (item,left,right)
procedure Preorder (T)

if \T then {
write(T.item);
Preorder(T.left); Preorder(T.right) }

end

procedure main()
t := node(1, node(2, &null, &null),

node(3, &null,
node(4, &null, &null)))

Preorder(t); xdump(t)
end

[25]
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Binary Trees in Icon. . .

> icont b
> b
1
2
3
4
R node 4 := node()

R node 4.item := 1
R node 4.left := R node 1 := node()

R node 1.item := 2
R node 4.right := R node 3 := node()

R node 3.item := 3
R node 3.right := R node 2 := node()

R node 2.item := 4

[26]
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Readings and References

Read Christopher, pp 29--34,105--126 .

[27]
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