
372 —Fall 2005 — 33

CSc 372

Comparative Programming
Languages

33 : Icon — Generators

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com

372 —Fall 2005 — 33

Expressions as Generators

Icon expressions are generators, they can return a
sequence of values.

Every expression has three possibilities: It can generate
1. no values (≡ failure),
2. one value, or
3. several values.

[2]

372 —Fall 2005 — 33

Expressions as Generators. . .

Icon has many built-in generators, e.g. i to j by k.
The following two statements are equivalent:

every i := j to k do p(i)
every p(j to k)

every e asks e to generate as many values as it
possibly can, by backtracking into it until it fails.

every e1 do e2 evaluates e2 for every value
generated by e1.

[3]

372 —Fall 2005 — 33

Expressions as Generators. . .

The number of values a generator will produce depends
on the environment in which it is invoked:

][write(1 to 5);
1

r1 := 1 (integer)
][every write(1 to 5);
1
2
3
4
5
Failure

[4]

372 —Fall 2005 — 33

find

find(e1, e2) returns the positions within the string
e2 where the string e1 occurs.

find("wh", "who, what, when") has three
possible solutions and hence generates three values.

123456789012345
][every i:=find("wh","who, what, when")

do write(i);
1
6
12
Failure

[5]

372 —Fall 2005 — 33

Goal-Directed Evaluation

Expression evaluation in Icon is goal-directed; you
always try to make every expression succeed and
return a value, if at all possible.

In the example below, find first returns 1. This makes
((i :=...) > 10) fail. Next find generates 14
which makes ((i :=...) > 10) succeed, and
write is executed.

S := "where and at what time?"
if (i := find("wh", S) > 10) then
write(i)

[6]

372 —Fall 2005 — 33

Goal-Directed Evaluation. . .

][10 < (1 to 12);
r34 := 11

][every write(10 < (1 to 12));
11
12
Failure

[7]

372 —Fall 2005 — 33

Counting Vowels

procedure main()
v := 0
while line := read() do {

every c := !line do
if c == !"aeiouAEIOU" then

v +:= 1
}
write("vowels=",v)

end

> vowels
hi there
vowels=3

[8]

372 —Fall 2005 — 33

find. . .

The expression

S := "where and at what time?"
][every i := 10<find("wh",S) do write(i);
14

can also be written

][every write(10 < find("wh",S));
14

[9]

372 —Fall 2005 — 33

File Operations

The following statement copies a file f1 row-by-row to
another file f2:

while write(f2, read(f1))

Note that read is not a generator — hence the use of
while rather than every.

[10]

372 —Fall 2005 — 33

Bang!

!S Generates all the characters from the string S, or all
the elements of the list/table/set S.

every write(!S) writes all the characters from the
stringS, one character per line.

If S is a variable then !S will generate variables that can
be assigned to.

[11]

372 —Fall 2005 — 33

Backtracking

&fail always fails.

][&fail;
Failure
][3;

r38 := 3 (integer)
][3 + &fail;
Failure
][3 + numeric("pi");
Failure

[12]

372 —Fall 2005 — 33

Bang! — Examples

Different ways to write the elements of a list:

][L := [1,2,3];
][every i := !L do write(i);
1
2
3
][every write(!L);
1
2
3

[13]

372 —Fall 2005 — 33

Bang! — Examples. . .

][every write(L[1 to 3]);
1
2
3
][write(!L) + &fail;
1
2
3

[14]

372 —Fall 2005 — 33

Bang!. . .

If L in !L generates variables, then they can be
assigned to:

][every !L := 5;
][L;

r16 := L1:[5,5,5]
][!L := 1;
][L;

r24 := L1:[1,5,5]

[15]

372 —Fall 2005 — 33

Bang!. . .

Note that literal strings cannot be assigned to:

][S := "bye";
][write(!S);
b
][every write(!S);
b
y
e
Failure
][every !S := "m";
][S;

r30 := "mmm" (string)
][every !"bye" := "m";
Run-time error 111

[16]

372 —Fall 2005 — 33

Other Built-In Generators

?S Generates random elements from the set, string, table,
etc.S.

upto(C, S) Generate all the positions in the string S,
where the characters inC occur. C is a special
construction called aCSet, a set of characters.CSets
are written in single quotes, strings in doubles.

12345678901234
upto (’xyz’, "zebra-ox-young")

generates {1, 8, 10}

[17]

372 —Fall 2005 — 33

Alternation

[18]

372 —Fall 2005 — 33

Alternation

expr1 | expr2 generates the values from expr1,
then fromexpr2.

1 | 2 | 3 is the same as 1 to 3.

(1 to 3) | (4 to 6) is the same as 1 to 6.

&fail | 3 generates 3.

(1=2) | 3 generates 3.

(1=1) | 3 generates 1,3 (since 1=1 succeeds and
produces 1).

[19]

372 —Fall 2005 — 33

Variable generation

The expression x | y generates the variables x and y.

The expression every (x | y) := 0 is equivalent to
x := 0; y := 0

[20]

372 —Fall 2005 — 33

Terminating Execution

The built-in procedure stop(s) writes s and
terminates execution.

A common idiom is x := p() | stop("error"). If
p() fails, then stop and write "error", otherwise
assign the result of p() to x.

[21]

372 —Fall 2005 — 33

Variable generation

every i := (0 | 1) do write (i) First write 0 then
1.

every (x | y) := 0 x := 0; y := 0

][x := 1;
][y:= 2;
][every write(x|y);
1
2
][every (x|y) := 42;
][every write(x|y);
42
42

[22]

372 —Fall 2005 — 33

Examples

][every write(1 | 2 | !"45" | 6);
1
2
4
5
6
][write((1 | 2 | 3) > 2);
2

r13 := 2
][write(2 < (1 | 2 | 3));
3

r14 := 3

[23]

372 —Fall 2005 — 33

Examples

][x := 5;
r16 := 5

][y := 6;
r19 := 6

][(x | y) = 6;
r20 := 6

[24]

372 —Fall 2005 — 33

Procedures as Generators

[25]

372 —Fall 2005 — 33

Procedures as Generators

Procedures are really generators; they can return 0, 1, or a
sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and
makes itself ready to possibly generate more values.

[26]

372 —Fall 2005 — 33

Example

procedure To(i,j)
while i <= j do {

suspend i
i+:= 1

}
end

procedure main()
every k := To(1,3) do

write(k)
end

[27]

372 —Fall 2005 — 33

simple.icn

procedure P()
suspend 3
suspend 4
suspend 5

end

procedure main()
every k := P() do

write(k)
end

[28]

372 —Fall 2005 — 33

simple.icn. . .

> setenv TRACE 100
> simple

: main()
simple.icn : 8 | P()
simple.icn : 2 | P suspended 3
3
simple.icn : 9 | P resumed
simple.icn : 3 | P suspended 4
4
simple.icn : 9 | P resumed
simple.icn : 4 | P suspended 5
5
simple.icn : 9 | P resumed
simple.icn : 5 | P failed
simple.icn : 10 main failed

[29]

372 —Fall 2005 — 33

simple.icn. . .

Remember goal-directed evaluation — Icon will resume
a generator as many times as necessary in order to try
to make an expression succeed.

The number of times a generator is invoked also
depends on the context.

[30]

372 —Fall 2005 — 33

simple.icn. . .

][.inc simple.icn;
][P();

r1 := 3 (integer)
][every write(P());
3
4
5
][P()=4;

r3 := 4
][P() + 10;

r4 := 13

[31]

372 —Fall 2005 — 33

Bounded Expressions

[32]

372 —Fall 2005 — 33

Bounded Expressions

Unlike Prolog, backtracking in Icon is bounded. This
means that a generator that appears in certain parts of
certain control constructs will never generate more than
one value.

if e1 then e2 else e3 — e1 is bounded, e2 and
e3 are not.

while e1 do e2 — e1 and e2 are both bounded.

every e1 do e2 — e1 is not bounded but e2 is.

{e1, e2, ..., en} — e1, e2,... are bounded
but en is not.

[33]

372 —Fall 2005 — 33

Example

][if write(P()) then &fail else &fail;
3
Failure
][(if P() then write(P()) else 1) & &fail;
3
4
5
Failure

[34]

372 —Fall 2005 — 33

Example. . .

][every i := P() do write(i);
3
4
5
Failure
][while i := P() do write(i);
3
3
3...
][{write(P()); 42} & &fail;
3

[35]

372 —Fall 2005 — 33

Example. . .

][every i := {write(1 to 5); 42} do write(i);
1
42
][every i := {write(1 to 5); 10 to 12} do write(i);
1
10
11
12
][every i := {write(1 to 5); write(100 to 105);
1
100
10
11
12

[36]

372 —Fall 2005 — 33

Summary

[37]

372 —Fall 2005 — 33

Readings

Read Christopher, pp. 35--42, 44, 56--57.

Alternatively, read Griswold&Griswold, pp.
87--95.

[38]

372 —Fall 2005 — 33

Acknowledgments

Some material on these slides has been modified from
William Mitchell’s Icon notes:
http://www.cs.arizona.edu/classes/cs372/fall03/handouts.html.

Some material on these slides has been modified from
Thomas W Christopher’s Icon Programming Language
Handbook,
http://www.tools-of-computing.com/tc/CS/iconprog.pdf.

[39]

http://www.cs.arizona.edu/classes/cs372/fall03/handouts.html
http://www.tools-of-computing.com/tc/CS/iconprog.pdf

	Expressions as Generators
	Expressions as Generatorsldots
	Expressions as Generatorsldots
	{	t find}
	Goal-Directed Evaluation
	Goal-Directed Evaluationldots
	Counting Vowels
	{	t find}ldots
	File Operations
	Bang!
	Backtracking
	Bang! --- Examples
	Bang! --- Examplesldots
	Bang!ldots
	Bang!ldots
	Other Built-In Generators
	Alternation
	Alternation
	Variable generation
	Terminating Execution
	Variable generation
	Examples
	Examples
	Procedures as Generators
	Procedures as Generators
	Example
	simple.icn
	simple.icnldots
	simple.icnldots
	simple.icnldots
	Bounded Expressions
	Bounded Expressions
	Example
	Exampleldots
	Exampleldots
	Summary
	Readings
	Acknowledgments

