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Expressions as Generators

Icon expressions are generators, they can return a
sequence of values.

Every expression has three possibilities: It can generate
1. no values (≡ failure),
2. one value, or
3. several values.

[2]
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Expressions as Generators. . .

Icon has many built-in generators, e.g. i to j by k.
The following two statements are equivalent:

every i := j to k do p(i)
every p(j to k)

every e asks e to generate as many values as it
possibly can, by backtracking into it until it fails.

every e1 do e2 evaluates e2 for every value
generated by e1.

[3]
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Expressions as Generators. . .

The number of values a generator will produce depends
on the environment in which it is invoked:

][ write(1 to 5);
1

r1 := 1 (integer)
][ every write(1 to 5);
1
2
3
4
5
Failure

[4]
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find

find(e1, e2) returns the positions within the string
e2 where the string e1 occurs.

find("wh", "who, what, when") has three
possible solutions and hence generates three values.

# 123456789012345
][ every i:=find("wh","who, what, when")

do write(i);
1
6
12
Failure

[5]
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Goal-Directed Evaluation

Expression evaluation in Icon is goal-directed; you
always try to make every expression succeed and
return a value, if at all possible.

In the example below, find first returns 1. This makes
((i :=...) > 10) fail. Next find generates 14
which makes ((i :=...) > 10) succeed, and
write is executed.

S := "where and at what time?"
if (i := find("wh", S) > 10) then
write(i)

[6]
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Goal-Directed Evaluation. . .

][ 10 < (1 to 12);
r34 := 11

][ every write( 10 < (1 to 12));
11
12
Failure

[7]
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Counting Vowels

procedure main()
v := 0
while line := read() do {

every c := !line do
if c == !"aeiouAEIOU" then

v +:= 1
}
write("vowels=",v)

end

> vowels
hi there
vowels=3

[8]
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find. . .

The expression

S := "where and at what time?"
][ every i := 10<find("wh",S) do write(i);
14

can also be written

][ every write(10 < find("wh",S));
14

[9]
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File Operations

The following statement copies a file f1 row-by-row to
another file f2:

while write(f2, read(f1))

Note that read is not a generator — hence the use of
while rather than every.

[10]
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Bang!

!S Generates all the characters from the string S, or all
the elements of the list/table/set S.

every write(!S) writes all the characters from the
stringS, one character per line.

If S is a variable then !S will generate variables that can
be assigned to.

[11]
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Backtracking

&fail always fails.

][ &fail;
Failure
][ 3;

r38 := 3 (integer)
][ 3 + &fail;
Failure
][ 3 + numeric("pi");
Failure

[12]
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Bang! — Examples

Different ways to write the elements of a list:

][ L := [1,2,3];
][ every i := !L do write(i);
1
2
3
][ every write(!L);
1
2
3

[13]
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Bang! — Examples. . .

][ every write(L[1 to 3]);
1
2
3
][ write(!L) + &fail;
1
2
3

[14]
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Bang!. . .

If L in !L generates variables, then they can be
assigned to:

][ every !L := 5;
][ L;

r16 := L1:[5,5,5]
][ !L := 1;
][ L;

r24 := L1:[1,5,5]

[15]
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Bang!. . .

Note that literal strings cannot be assigned to:

][ S := "bye";
][ write(!S);
b
][ every write(!S);
b
y
e
Failure
][ every !S := "m";
][ S;

r30 := "mmm" (string)
][ every !"bye" := "m";
Run-time error 111

[16]
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Other Built-In Generators

?S Generates random elements from the set, string, table,
etc.S.

upto(C, S) Generate all the positions in the string S,
where the characters inC occur. C is a special
construction called aCSet, a set of characters.CSets
are written in single quotes, strings in doubles.

12345678901234
upto (’xyz’, "zebra-ox-young")

generates {1, 8, 10}

[17]
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Alternation

[18]
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Alternation

expr1 | expr2 generates the values from expr1,
then fromexpr2.

1 | 2 | 3 is the same as 1 to 3.

(1 to 3) | (4 to 6) is the same as 1 to 6.

&fail | 3 generates 3.

(1=2) | 3 generates 3.

(1=1) | 3 generates 1,3 (since 1=1 succeeds and
produces 1).

[19]
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Variable generation

The expression x | y generates the variables x and y.

The expression every (x | y) := 0 is equivalent to
x := 0; y := 0

[20]
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Terminating Execution

The built-in procedure stop(s) writes s and
terminates execution.

A common idiom is x := p() | stop("error"). If
p() fails, then stop and write "error", otherwise
assign the result of p() to x.

[21]
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Variable generation

every i := (0 | 1) do write (i) First write 0 then
1.

every (x | y) := 0 x := 0; y := 0

][ x := 1;
][ y:= 2;
][ every write(x|y);
1
2
][ every (x|y) := 42;
][ every write(x|y);
42
42

[22]
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Examples

][ every write(1 | 2 | !"45" | 6);
1
2
4
5
6
][ write((1 | 2 | 3) > 2);
2

r13 := 2
][ write(2 < (1 | 2 | 3));
3

r14 := 3

[23]



372 —Fall 2005 — 33

Examples

][ x := 5;
r16 := 5

][ y := 6;
r19 := 6

][ (x | y) = 6;
r20 := 6

[24]
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Procedures as Generators

[25]



372 —Fall 2005 — 33

Procedures as Generators

Procedures are really generators; they can return 0, 1, or a
sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and
makes itself ready to possibly generate more values.

[26]
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Example

procedure To(i,j)
while i <= j do {

suspend i
i+:= 1

}
end

procedure main()
every k := To(1,3) do

write(k)
end

[27]
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simple.icn

procedure P()
suspend 3
suspend 4
suspend 5

end

procedure main()
every k := P() do

write(k)
end

[28]
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simple.icn. . .

> setenv TRACE 100
> simple

: main()
simple.icn : 8 | P()
simple.icn : 2 | P suspended 3
3
simple.icn : 9 | P resumed
simple.icn : 3 | P suspended 4
4
simple.icn : 9 | P resumed
simple.icn : 4 | P suspended 5
5
simple.icn : 9 | P resumed
simple.icn : 5 | P failed
simple.icn : 10 main failed

[29]
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simple.icn. . .

Remember goal-directed evaluation — Icon will resume
a generator as many times as necessary in order to try
to make an expression succeed.

The number of times a generator is invoked also
depends on the context.

[30]
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simple.icn. . .

][ .inc simple.icn;
][ P();

r1 := 3 (integer)
][ every write(P());
3
4
5
][ P()=4;

r3 := 4
][ P() + 10;

r4 := 13

[31]
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Bounded Expressions

[32]
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Bounded Expressions

Unlike Prolog, backtracking in Icon is bounded. This
means that a generator that appears in certain parts of
certain control constructs will never generate more than
one value.

if e1 then e2 else e3 — e1 is bounded, e2 and
e3 are not.

while e1 do e2 — e1 and e2 are both bounded.

every e1 do e2 — e1 is not bounded but e2 is.

{e1, e2, ..., en} — e1, e2,... are bounded
but en is not.

[33]
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Example

][ if write(P()) then &fail else &fail;
3
Failure
][ (if P() then write(P()) else 1) & &fail;
3
4
5
Failure

[34]
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Example. . .

][ every i := P() do write(i);
3
4
5
Failure
][ while i := P() do write(i);
3
3
3...
][ {write(P()); 42} & &fail;
3

[35]
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Example. . .

][ every i := {write(1 to 5); 42} do write(i);
1
42
][ every i := {write(1 to 5); 10 to 12} do write(i);
1
10
11
12
][ every i := {write(1 to 5); write(100 to 105);
1
100
10
11
12

[36]
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Summary

[37]
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Readings

Read Christopher, pp. 35--42, 44, 56--57.

Alternatively, read Griswold&Griswold, pp.
87--95.

[38]
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