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Defining Functions
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# When programming in a functional language we have
basically two techniques to choose from when defining
a new function:

1. Recursion
2. Composition

® Recursion iIs often used for basic “low-level” functions,
such that might be defined in a function library.

# Composition (which we will cover later) is used to
combine such basic functions into more powerful ones.

# Recursion is closely related to proof by induction.
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Defining Functions. ..
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# Here’s the ubiquitous factorial function:

fact :: Int -> Int
fact n = 1f n == 0 then
1
el se
n * fact (n-1)

# The first part of a function definition is the type
1§ignature, which gives the domain and range of the
unction:

fact :: lnt -> I nt

# The second part of the definition Is the function
declaration, the implementation of the function:

fact n =1f n == 0 then ---
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Defining Functions. ..
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# The syntax of a type signature Is
fun_name :: argunent _types

f act takes one integer input argument and returns one
iInteger result.

# The syntax of function declarations:
fun_nane paramnanes = fun_body
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Condltlonal Expressmns
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® if e then ey el se esisa conditional expression
that returns the value of e; If ¢; evaluates to Tr ue. If ¢;

evaluates to Fal se, then the value of e3 Is returned.
Examples:

| f True then 5 el se 6
| f False then 5 el se 6
| f 1==2 then 5 el se 6
5+ 1f 1==1 then 3 else 2

# Note that this is different from Java’s or C’s
If-statement, but just like their ternary operator ?: :

44l
0 o O Ul

Nt max = (xX>y) ?X:y;
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Condltlonal Expressmns. .
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# Example:
abs :: Int -> Int
abs n = 1f n>0 then n else -n
sign :: Int ->Int
sign n =1f n<O then -1 el se

I1f n==0 then 0 else 1

# Unlike in C and Java, you can'’t leave off the el se-part!
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Guarded Equatio_n%s
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# An alternative way to define conditional execution is to

use guards:
abs :: Int -> Int
abs n | n>= 0 =n

| otherw se = -n
sign :: Int ->1Int
sign n| n<O = -1

==0 = 0
otherwmse =1

#® The pipe symbol is read such that.

°

ot her w se Is defined to be Tr ue.

® Guards are often easier to read — It's also easier to

verify that you have covered all cases.
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Defining Functions. ..

o fact is defined recursively, i.e. the function body
contains an application of the function itself.

# The syntax of function application is: f un_nane ar g.
This syntax is known as “juxtaposition”.

o We will discuss multi-argument functions later. For now,
this is what a multi-argument function application (“call”)

looks like:

fun_name arg.l arg2 --- arg.n
# Function application examples:

fact 1 = 1
fact 5 = 120
fact (3+2) = 120
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Multi-Argument Functions
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# A simple way (but usually not the right way) of defining
an multi-argument function is to use tuples:

add :: (Int,Int) -> Int
add (x,y) = x+ty

> add (40, 2)
42

o Later, we'll learn about Curried Functions.
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#® error string can be usedto generate an error
message and terminate a computation.

# This Is similar to Java’s exception mechanism, but a lot
less advanced.

f :: Int ->1Int
f n=1f n<0 then
error "illegal argunent”
else If n <=1 then
1
el se
n*f (n-1)
> f (-1)
Programerror: 1illegal argunent
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Layout
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# A function definition is finished by the first line not
Indented more than the start of the definition

myfunc :: Int -> Int
myfunc x = 1f x == 0 then
0O el se 99
myfunc :: Int -> Int
nyfunc x = 1f x == 0 then
0 el se 99
myfunc :: Int -> Int
myfunc x = i1f x == 0 then
0 el se 99

#® The last two generate a Syntax error in

5pr essi on when the functlon IS loaded.
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Function Application
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# Function application (“calling a function with a particular
argument”) has higher priority than any other operator.

# In math (and Java) we use parenthses to include
arguments; in Haskell no parentheses are needed.

>f a+ b

means

> (f a) + Db

since function application binds harder than plus.
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Function Application. ..
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# Here's a comparison between mathematical notations

and Haskell:
Math Haskell
f(z) f X
fly) T xy
flg(xz)) f (g9 x)
flz,g(y) T x (9 Y)
flx)gly) T x * gy
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Recursive Functions
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Slmple Recurswe Functlons
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o Typically, a recursive function definition consists of a
guard (a boolean expression), a base case (evaluated
when the guard is Tr ue), and a general case
(evaluated when the guard is False).

fact n =
I1f n == 0 then < guard
1 < base case
el se
n * fact (n-1) < general case
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Simulating Recursive Functions

# We can visualize the evaluation of f act 3 using a tree
view, box view, or reduction view.

# The tree and box views emphasize the flow-of-control
from one level of recursion to the next

# The reduction view emphasizes the substitution steps
that the hugs Iinterpreter goes through when evaluating
a function. In our notation boxed subexpressions are
substituted or evaluated in the next reduction.

# Note that the Haskell interpreter may not go through
exactly the same steps as shown in our simulations.
More about this later.

372 —Fall 2005 — 5 [16]



=g s St ey

Tree View off act 3

fact 3

/
if 3==0 then 1
else 3 * fact (3—-1)

fact 2

/

if 2==0 then 1
else 2 * fact (2—-1)

fact 1

e
if 1==0 then 1
else 1 * fact (1-1)

fact O
e
if 0==0 then 1
else ...
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® Thisis a Tree View of
fact 3.

» We keep going
deeper into the recur-
sion (evaluating the
general case) until the
guard is evaluated to
True.



Tree View off act 3
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fact 3
/ V\\\\ 3¥9=6
if 3==0 then 1 /
else 3 * fact (3— 1)
fact 2 \\\\2*1:2
/ '

if 2==0 then 1
else 2 * fact (2- 1)

/mc\tlJ R

if 1==0 then 1
else 1 * fact (1- 1)
factO // .
- \
if 0==0 then 1 e
else ...
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# When the guard Is
Tr ue we evaluate the
pase case and return
pack up through the
ayers of recursion.




Box View off act 3
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fact 3
0l—=[__ | False o
- | f
fact 2 1 t hen
\ 2
P ialine —= * ™ else
1
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Box View off act 3...

fact 3

False
- if
; /
— fact 2 1 — then

* ™ else
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Box View off act 3...

fact 3

Fal se

1 — then

* ™ else
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Reductlon View off act 3

R T R e e S e L T T e T

fact 3 =

If 3 == 0then 1 else 3 * fact (3-1) =

I f False then 1 else 3 * fact (3-1) =

fact (3-1) =

fact 2 =

I1f 2 ==0then 1 else 2 * fact (2-1)=

| f False then 1 else 2 * fact (2-1) =

(2 * fact (2-1)) =

(2 * fact 1) =

(2 *1f 1 ==0then 1 else 1 * fact (1-1))

WwWwWwwowwww
* ok k% ok F X
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Reduction View off act 3.

* (2 % if
*(27* (1
* (27 (1
(2 * (1
* (2% (1
* (2% (1

o W W W w w w www
*
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* (2% qif 1

*

*

== 0 then 1 else 1 * fact (1-1)) =
Fal se then 1 else 1 * fact (1-1)) =
* fact (1-1))) =

fact 0)) =

1f 0 ==

O then 1 else 0 * fact (0-1))) =

*1f True then 1 else 0 * fact (0-1))) =

*

* (2 * 1) =

1)) =
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_ ecursi_on Over Li_s‘ts

# Inthe fact function the guard was n==0, and the
recursive step was f act (n-1). l.e. we subtracted 1
from f act 's argument to make a simpler (smaller)
recursive case.

# We can do something similar to recurse over a list:

1. The guard will often be n==[ ] (other tests are of
course possible).

2. To get a smaller list to recurse over, we often split the
list into its head and tail, head: t ai | .

3. The recursive function application will often be on
thetail, f tail.
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In English:

The length of the empty list[ ] Is zero. The length
of a non-empty list S is one plus the length of the

tail of S.
In Haskell:
len :: [Int] -> Int
len s = If s == ] then
0
el se

1 + len (tail s)

o We first check if we've reached the end of the list s==
| . Otherwise we compute the length of the tail of s, and
add one to get the length of s itself.
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Reduction View ofl en [5, 6]

len s =if s == ] then O else 1 + len (tail s)

len [5,6] =
if [5,6]==[ ] then O else 1 + len (tail [5,6]) =
len (tail [5,6]) =
len [ 6] =
(1f [6]==[ ] then O else 1 + len (tail [6])) =
(1 +len (tail [6])) =
(1L +len[ ]) =
(1 + (if [ ]==[ ] then O else 1+len (tail [ ]))) =
(1+0) =1+1= 2

e i
+ + + + + + +
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Tree Vlewofl en [5 6 7]
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len |5, 6, /]

/ ‘ 1+2 3

if [5,6,7]==[] then O
else 1 + len (tall [5,6,7])

/'_6@ e

if [6,7]==[] then O ~
else 1 + len (tall [6,7])

len [7] 1+0=1

| f [7] =[] then O \
else 1 + len (ta|I [ 7])

///JEQL:>

| f [] =[] then O -
el se ...
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len :: [Int] -> Int
len s = 1f s==[ ] then O
el se 1+len(tail s)

® Tree View of | en
[ 5,6, 7]
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