T T e Sttt o = ~= TS

CSc 372

Comparative Programming
Languages
5 : Haskell — Function Definitions

Christian Collberg

col | berg+372@nmai | . com

Department of Computer Science

University of Arizona

Copyright (©) 2005 Christian Collberg

372 —Fall 2005 — 5 [1]

collberg+372@gmail.com

Defining Functions

L N T Ep

When programming in a functional language we have
basically two techniques to choose from when defining
a new function:

1. Recursion
2. Composition

® Recursion iIs often used for basic “low-level” functions,
such that might be defined in a function library.

Composition (which we will cover later) is used to
combine such basic functions into more powerful ones.

Recursion is closely related to proof by induction.

372 —Fall 2005 — 5 [2]

Defining Functions. ..

s s St o o e

Here’s the ubiquitous factorial function:

fact :: Int -> Int
fact n = 1f n == 0 then
1
el se
n * fact (n-1)

The first part of a function definition is the type
1§ignature, which gives the domain and range of the
unction:

fact :: lnt -> I nt

The second part of the definition Is the function
declaration, the implementation of the function:

fact n =1f n == 0 then ---

372 —Fall 2005 — 5 [3]

Defining Functions. ..

= e e e, et

The syntax of a type signature Is
fun_name :: argunent _types

f act takes one integer input argument and returns one
iInteger result.

The syntax of function declarations:
fun_nane paramnanes = fun_body

372 —Fall 2005 — 5 [4]

Condltlonal Expressmns

e R TS —

® if e then ey el se esisa conditional expression
that returns the value of e; If ¢; evaluates to Tr ue. If ¢;

evaluates to Fal se, then the value of e3 Is returned.
Examples:

| f True then 5 el se 6
| f False then 5 el se 6
| f 1==2 then 5 el se 6
5+ 1f 1==1 then 3 else 2

Note that this is different from Java’s or C’s
If-statement, but just like their ternary operator ?: :

44l
0 o O Ul

Nt max = (xX>y) ?X:y;

372 —Fall 2005 — 5 [5]

Condltlonal Expressmns. .

R T T TR RS

Example:
abs :: Int -> Int
abs n = 1f n>0 then n else -n
sign :: Int ->Int
sign n =1f n<O then -1 el se

I1f n==0 then 0 else 1

Unlike in C and Java, you can'’t leave off the el se-part!

372 —Fall 2005 — 5 [6]

Guarded Equatio_n%s

= e e e, et

An alternative way to define conditional execution is to

use guards:
abs :: Int -> Int
abs n | n>= 0 =n

| otherw se = -n
sign :: Int ->1Int
sign n| n<O = -1

==0 = 0
otherwmse =1

#® The pipe symbol is read such that.

°

ot her w se Is defined to be Tr ue.

® Guards are often easier to read — It's also easier to

verify that you have covered all cases.
372 —Fall 2005 — 5 [7]

Defining Functions. ..

o fact is defined recursively, i.e. the function body
contains an application of the function itself.

The syntax of function application is: f un_nane ar g.
This syntax is known as “juxtaposition”.

o We will discuss multi-argument functions later. For now,
this is what a multi-argument function application (“call”)

looks like:

fun_name arg.l arg2 --- arg.n
Function application examples:

fact 1 = 1
fact 5 = 120
fact (3+2) = 120

372 —Fall 2005 — 5 [8]

Multi-Argument Functions

s s St o o e

A simple way (but usually not the right way) of defining
an multi-argument function is to use tuples:

add :: (Int,Int) -> Int
add (x,y) = x+ty

> add (40, 2)
42

o Later, we'll learn about Curried Functions.

372 —Fall 2005 — 5 [9]

The err or Functi_Qn

= e e e, et

#® error string can be usedto generate an error
message and terminate a computation.

This Is similar to Java’s exception mechanism, but a lot
less advanced.

f :: Int ->1Int
f n=1f n<0 then
error "illegal argunent”
else If n <=1 then
1
el se
n*f (n-1)
> f (-1)
Programerror: 1illegal argunent

372 —Fall 2005 — 5 [10]

Layout

o T e —— s et

A function definition is finished by the first line not
Indented more than the start of the definition

myfunc :: Int -> Int
myfunc x = 1f x == 0 then
0O el se 99
myfunc :: Int -> Int
nyfunc x = 1f x == 0 then
0 el se 99
myfunc :: Int -> Int
myfunc x = i1f x == 0 then
0 el se 99

#® The last two generate a Syntax error in

5pr essi on when the functlon IS loaded.
372 —Fall 200

Function Application

= e e e, et

Function application (“calling a function with a particular
argument”) has higher priority than any other operator.

In math (and Java) we use parenthses to include
arguments; in Haskell no parentheses are needed.

>f a+ b

means

> (f a) + Db

since function application binds harder than plus.

372 —Fall 2005 — 5 [12]

Function Application. ..

= e re——

Here's a comparison between mathematical notations

and Haskell:
Math Haskell
f(z) f X
fly) T xy
flg(xz)) f (g9 x)
flz,g(y) T x (9 Y)
flx)gly) T x * gy

372 —Fall 2005 — 5 [13]

S R e e S e

Recursive Functions

372 —Fall 2005 — 5 [14]

Slmple Recurswe Functlons

R T T B St =

o Typically, a recursive function definition consists of a
guard (a boolean expression), a base case (evaluated
when the guard is Tr ue), and a general case
(evaluated when the guard is False).

fact n =
I1f n == 0 then < guard
1 < base case
el se
n * fact (n-1) < general case

372 —Fall 2005 — 5 [15]

Simulating Recursive Functions

We can visualize the evaluation of f act 3 using a tree
view, box view, or reduction view.

The tree and box views emphasize the flow-of-control
from one level of recursion to the next

The reduction view emphasizes the substitution steps
that the hugs Iinterpreter goes through when evaluating
a function. In our notation boxed subexpressions are
substituted or evaluated in the next reduction.

Note that the Haskell interpreter may not go through
exactly the same steps as shown in our simulations.
More about this later.

372 —Fall 2005 — 5 [16]

=g s St ey

Tree View off act 3

fact 3

/
if 3==0 then 1
else 3 * fact (3—-1)

fact 2

/

if 2==0 then 1
else 2 * fact (2—-1)

fact 1

e
if 1==0 then 1
else 1 * fact (1-1)

fact O
e
if 0==0 then 1
else ...

372 —Fall 2005 — 5 [17]

® Thisis a Tree View of
fact 3.

» We keep going
deeper into the recur-
sion (evaluating the
general case) until the
guard is evaluated to
True.

Tree View off act 3

T e—

fact 3
/ V\\\\ 3¥9=6
if 3==0 then 1 /
else 3 * fact (3— 1)
fact 2 \\\\2*1:2
/ '

if 2==0 then 1
else 2 * fact (2- 1)

/mc\tlJ R

if 1==0 then 1
else 1 * fact (1- 1)
factO // .
- \
if 0==0 then 1 e
else ...

372 —Fall 2005 — 5

[18]

When the guard Is
Tr ue we evaluate the
pase case and return
pack up through the
ayers of recursion.

Box View off act 3

- e

fact 3
0l—=[__ | False o
- | f
fact 2 1 t hen
\ 2
P ialine —= * ™ else
1

372 —Fall 2005 — 5 [19]

Box View off act 3...

fact 3

False
- if
; /
— fact 2 1 — then

* ™ else

372 —Fall 2005 — 5 [20]

Box View off act 3...

fact 3

Fal se

1 — then

* ™ else

372 —Fall 2005 — 5 [21]

Reductlon View off act 3

R T R e e S e L T T e T

fact 3 =

If 3 == 0then 1 else 3 * fact (3-1) =

I f False then 1 else 3 * fact (3-1) =

fact (3-1) =

fact 2 =

I1f 2 ==0then 1 else 2 * fact (2-1)=

| f False then 1 else 2 * fact (2-1) =

(2 * fact (2-1)) =

(2 * fact 1) =

(2 *1f 1 ==0then 1 else 1 * fact (1-1))

WwWwWwwowwww
* ok k% ok F X

372 —Fall 2005 — 5 [22]

Reduction View off act 3.

* (2 % if
(27 (1
* (27 (1
(2 * (1
* (2% (1
* (2% (1

o W W W w w w www
*

372 —Fall 2005 — 5

* (2% qif 1

*

*

== 0 then 1 else 1 * fact (1-1)) =
Fal se then 1 else 1 * fact (1-1)) =
* fact (1-1))) =

fact 0)) =

1f 0 ==

O then 1 else 0 * fact (0-1))) =

*1f True then 1 else 0 * fact (0-1))) =

*

* (2 * 1) =

1)) =

[23]

_ ecursi_on Over Li_s‘ts

Inthe fact function the guard was n==0, and the
recursive step was f act (n-1). l.e. we subtracted 1
from f act 's argument to make a simpler (smaller)
recursive case.

We can do something similar to recurse over a list:

1. The guard will often be n==[] (other tests are of
course possible).

2. To get a smaller list to recurse over, we often split the
list into its head and tail, head: t ai | .

3. The recursive function application will often be on
thetail, f tail.

372 —Fall 2005 — 5 [24]

Thel engt h Functlon

e R TS —

In English:

The length of the empty list[] Is zero. The length
of a non-empty list S is one plus the length of the

tail of S.
In Haskell:
len :: [Int] -> Int
len s = If s ==] then
0
el se

1 + len (tail s)

o We first check if we've reached the end of the list s==
| . Otherwise we compute the length of the tail of s, and
add one to get the length of s itself.

372 —Fall 2005 — 5 [25]

Reduction View ofl en [5, 6]

len s =if s ==] then O else 1 + len (tail s)

len [5,6] =
if [5,6]==[] then O else 1 + len (tail [5,6]) =
len (tail [5,6]) =
len [6] =
(1f [6]==[] then O else 1 + len (tail [6])) =
(1 +len (tail [6])) =
(1L +len[]) =
(1 + (if []==[] then O else 1+len (tail []))) =
(1+0) =1+1= 2

e i
+ + + + + + +

372 —Fall 2005 — 5 [26]

Tree Vlewofl en [5 6 7]

T T TR e T

len |5, 6, /]

/ ‘ 1+2 3

if [5,6,7]==[] then O
else 1 + len (tall [5,6,7])

/'_6@ e

if [6,7]==[] then O ~
else 1 + len (tall [6,7])

len [7] 1+0=1

| f [7] =[] then O \
else 1 + len (ta|I [7])

///JEQL:>

| f [] =[] then O -
el se ...

372 —Fall 2005 — 5

len :: [Int] -> Int
len s = 1f s==[] then O
el se 1+len(tail s)

® Tree View of | en
[5,6, 7]

[27]

	Defining Functions
	Defining Functionsldots
	Defining Functionsldots
	Conditional Expressions
	Conditional Expressionsldots
	Guarded Equations
	Defining Functionsldots
	Multi-Argument Functions
	The
edtt {error} Function
	Layout
	Function Application
	Function Applicationldots
	Recursive Functions
	Simple Recursive Functions
	Simulating Recursive Functions
	Tree View of {	t fact 3}
	Tree View of {	t fact 3}
	Box View of {	t fact 3}
	Box View of {	t fact 3}ldots
	Box View of {	t fact 3}ldots
	Reduction View of {	t fact 3}
	Reduction View of {	t fact 3}ldots
	Recursion Over Lists
	The {	t length} Function
	Reduction View of {	t len [5,6]}
	Tree View of {	t len [5,6,7]}

