
372 —Fall 2005 — 7

CSc 372

Comparative Programming
Languages

7 : Haskell — Patterns

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1]

collberg+372@gmail.com

372 —Fall 2005 — 7

Pattern Matching

Haskell has a notation (called patterns) for defining
functions that is more convenient than conditional
(if-then-else) expressions.

Patterns are particularly useful when the function has
more than two cases.

Pattern Syntax:
function name pattern 1 = expression 1
function name pattern 2 = expression 2

· · ·

function name pattern n = expression n

[2]

372 —Fall 2005 — 7

Pattern Matching. . .

fact n = if n == 0 then
1

else
n * fact (n-1)

fact Revisited:
fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

[3]

372 —Fall 2005 — 7

Pattern Matching. . .

Pattern matching allows us to have alternative
definitions for a function, depending on the format of the
actual parameter. Example:

isNice "Jenny" = "Definitely"
isNice "Johanna" = "Maybe"
isNice "Chris" = "No Way"

[4]

372 —Fall 2005 — 7

Pattern Matching. . .

We can use pattern matching as a design aid to help us
make sure that we’re considering all possible inputs.

Pattern matching simplifies taking structured function
arguments apart. Example:

fun (x:xs) = x ⊕ fun xs
⇔

fun xs = head xs ⊕ fun (tail xs)

[5]

372 —Fall 2005 — 7

Pattern Matching. . .

When a function f is applied to an argument, Haskell
looks at each definition of f until the argument matches
one of the patterns.

not True = False
not False = True

[6]

372 —Fall 2005 — 7

Pattern Matching. . .

In most cases a function definition will consist of a
number of mutually exclusive patterns, followed by a
default (or catch-all) pattern:

diary "Monday" = "Woke up"
diary "Sunday" = "Slept in"
diary anyday = "Did something else"

diary "Sunday" ⇒ "Slept in"
diary "Tuesday" ⇒ "Did something else"

[7]

372 —Fall 2005 — 7

Pattern Matching – Integer Patterns

There are several kinds of integer patterns that can be
used in a function definition.

Pattern Syntax Example Description
variable var_name fact n = · · · n matches any ar-

gument
constant literal fact 0 = · · · matches the value
wildcard _ five _ = 5 _ matches any ar-

gument
(n+k) pat. (n+k) fact (n+1) = · · · (n+k) matches

any integer ≥ k

[8]

372 —Fall 2005 — 7

Pattern Matching – List Patterns

There are also special patterns for matching and (taking
apart) lists.

Pattern Syntax Example Description
cons (x:xs) len (x:xs) = · · · matches non-empty list
empty [] len [] = 0 matches the empty list
one-elem [x] len [x] = 1 matches a list with ex-

actly 1 element.
two-elem [x,y] len [x,y] = 2 matches a list with ex-

actly 2 elements.

[9]

372 —Fall 2005 — 7

The sumlist Function

Using conditional expr:
sumlist :: [Int] -> Int
sumlist xs = if xs == [] then 0

else head xs + sumlist(tail xs)

Using patterns:
sumlist :: [Int] -> Int
sumlist [] = 0
sumlist (x:xs) = x + sumlist xs

Note that patterns are checked top-down! The ordering
of patterns is therefore important.

[10]

372 —Fall 2005 — 7

The length Function Revisited

Using conditional expr:
len :: [Int] -> Int
len s = if s == [] then 0 else 1 + len (tail s)

Using patterns:
len :: [Int] -> Int
len [] = 0
len (:xs) = 1 + len xs

Note how similar len and sumlist are. Many
recursive functions on lists will have this structure.

[11]

372 —Fall 2005 — 7

The fact Function Revisited

Using conditional expr:
fact n = if n == 0 then 1 else n * fact (n-1)

Using patterns:
fact’ :: Int -> Int
fact’ 0 = 1
fact’ (n+1) = (n+1) * fact’ n

Are fact and fact’ identical?

fact (-1) ⇒ Stack overflow
fact’ (-1) ⇒ Program Error

The second pattern in fact’ only matches positive
integers (≥ 1).

[12]

372 —Fall 2005 — 7

Summary

Functional languages use recursion rather than iteration
to express repetition.

We have seen two ways of defining a recursive function:
using conditional expressions (if-then-else) or
pattern matching.

A pattern can be used to take lists apart without having
to explicitly invoke head and tail.

Patterns are checked from top to bottom. They should
therefore be ordered from specific (at the top) to
general (at the bottom).

[13]

372 —Fall 2005 — 7

Homework

Define a recursive function addints that returns the
sum of the integers from 1 up to a given upper limit.

Simulate the execution of addints 4.

addints :: Int -> Int
addints a = · · ·

? addints 5
15

? addints 2
3

[14]

372 —Fall 2005 — 7

Homework

Define a recursive function member that takes two
arguments – an integer x and a list of integers L – and
returns True if x is an element in L.

Simulate the execution of member 3 [1,4,3,2].

member :: Int -> [Int] -> Bool
member x L = · · ·

? member 1 [1,2,3]
True

? member 4 [1,2,3]
False

[15]

372 —Fall 2005 — 7

Homework

Write a recursive function memberNum x L which
returns the number of times x occurs in L.

Use memberNum to write a function unique L which
returns a list of elements from L that occurs exactly
once.

memberNum :: Int -> [Int] -> Int
unique :: [Int] -> Int

? memberNum 5 [1,5,2,3,5,5]
3

? unique [2,4,2,1,4]
1

[16]

372 —Fall 2005 — 7

Homework

Ackerman’s function is defined for nonnegative integers:

A(0, n) = n + 1

A(m, 0) = A(m − 1, 1)

A(m,n) = A(m − 1, A(m,n − 1))

Use pattern matching to implement Ackerman’s
function.

Flag all illegal inputs using the built-in function error S
which terminates the program and prints the string S.

ackerman :: Int -> Int -> Int
ackerman 0 5 ⇒ 6
ackerman (-1) 5 ⇒ ERROR

[17]

	Pattern Matching
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matchingldots
	Pattern Matching -- Integer Patterns
	Pattern Matching -- List Patterns
	The {	t sumlist} Function
	The {	t length} Function Revisited
	The {	t fact} Function Revisited
	Summary
	Homework
	Homework
	Homework
	Homework

