
CSc 372

Comparative Programming Languages

15 : Prolog — Introduction

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2010 Christian Collberg

What is Prolog?

What is Prolog?

Prolog is a language which approaches problem-solving in a
declarative manner. The idea is to define what the problem is,
rather than how it should be solved.

In practice, most Prolog programs have a procedural as well as
a declarative component — the procedural aspects are often
necessary in order to make the programs execute efficiently.

What is Prolog?

Algorithm = Logic + Control Robert A. Kowalski

Prescriptive Languages:

Describe how to solve problem
Pascal, C, Ada,...
Also: Imperative, Procedural

Descriptive Languages:

Describe what should be done
Also: Declarative

Kowalski’s equation says that

Logic – is the specification (what the program should do)

Control – what we need to do in order to make our logic
execute efficiently. This usually includes imposing an
execution order on the rules that make up our program.



Objects & Relationships

Objects & Relationships

Prolog programs deal with

objects, and

relationships between objects

English:

“Christian likes the record”

Prolog:

likes(christian, record).

Facts

Record Database

Here’s an excerpt from Christian’s record database:

is record(planet waves).

is record(desire).

is record(slow train).

recorded by(planet waves, bob dylan).

recorded by(desire, bob dylan).

recorded by(slow train, bob dylan).

recording year(planet waves, 1974).

recording year(desire, 1975).

recording year(slow train, 1979).



Record Database. . .

The data base contains unary facts (is record) and binary

facts (recorded by, recording year).

The fact

is record(slow train)

can be interpreted as

slow train is-a-record

The fact recording year(slow train, 1979) can be
interpreted as the recording year of slow train was 1979.

Conditional Relationships

Conditional Relationships

Prolog programs deal with conditional relationships between
objects.

English:

“C. likes Bob Dylan records recorded before 1979”

Prolog:

likes(christian, X) :-

is record(X),

recorded by(X, bob dylan),

recording year(X, Year),

Year < 1979.

Conditional Relationships. . .

The rule

likes(christian, X) :-

is record(X),

recorded by(X, bob dylan),

recording year(X, Year),

Year < 1979.

can be restated as
“Christian likes X, if X is a record, and X is recorded

by Bob Dylan, and the recording year is before

1979.”

Variables start with capital letters.

Comma (“,”) is read as and.



Asking Questions

Asking Questions

Prolog programs

solve problems by asking questions.

English:

“Does Christian like the albums Planet Waves & Slow
Train?’

Prolog:

?- likes(christian, planet waves).

yes

?- likes(christian, slow train).

no

Asking Questions. . .

English:

“Was Planet Waves recorded by Bob Dylan?”

“When was Planet Waves recorded?”

“Which album was recorded in 1974?”

Prolog:

?- recorded by(planet waves, bob dylan).

yes

?- recording year(planet waves, X).

X = 1974

?- recording year(X, 1974).

X = planet waves

Asking Questions. . .

In Prolog

"," (a comma), means "and’

English:

“Did Bob Dylan record an album in 1974?”

Prolog:

?- is record(X),

recorded by(X, bob dylan),

recording year(X, 1974).

yes



Asking Questions. . .

Sometimes a query has more than one answer:

Use ";" to get all answers.

English:

“What does Christian like?”

Prolog:

?- likes(christian, X).

X = planet waves ;

X = desire ;

no

Asking Questions. . .

Sometimes answers have more than one part:
English:

“List the albums and their artists!”

Prolog:

?- is record(X), recorded by(X, Y).

X = planet waves,

Y = bob dylan ;

X = desire,

Y = bob dylan ;

X = slow train,

Y = bob dylan ;

no

Recursive Rules

Recursive Rules

“People are influenced by the music they listen to.

People are influenced by the music listened to by the

people they listen to.”

listens to(bob dylan, woody guthrie).

listens to(arlo guthrie, woody guthrie).

listens to(van morrison, bob dylan).

listens to(dire straits, bob dylan).

listens to(bruce springsteen, bob dylan).

listens to(björk, bruce springsteen).

influenced by(X, Y) :- listens to(X, Y).

influenced by(X, Y) :- listens to(X,Z),

influenced by(Z,Y).



Asking Questions. . .

English:

“Is Björk influenced by Bob Dylan?”

“Is Björk influenced by Woody Guthrie?”

“Is Bob Dylan influenced by Bruce Springsteen?”

Prolog:

?- influenced by(bjork, bob dylan).

yes

?- influenced by(bjork, woody guthrie).

yes

?- influenced by(bob dylan, bruce s).

no

Visualizing Logic

Comma (,) is read as and in Prolog. Example: The rule

person(X) :- has bellybutton(X), not dead(X).

is read as
“X is a person if X has a bellybutton and X is not

dead.”

Semicolon (;) is read as or in Prolog. The rule

person(X) :- X=adam ; X=eve ;

has bellybutton(X).

is read as
“X is a person if X is adam or X is eve or X has a

bellybutton.”

Visualizing Logic. . .

To visualize what happens when Prolog executes (and this can
often be very complicated!) we use the following two
notations:

AND OR

first

?− first, second.

second first

?− first; second.

second

For AND, both legs have to succeed.

For OR, one of the legs has to succeed.

Visualizing Logic. . .

Here are two examples:

AND OR

?− has_bellybutton(X), not_dead(X).

has_bellybutton(X) not_dead(X) has_bellybutton(X)X=eve

?− X=adam ; X=eve ;

X=adam

has_bellybutton(X).



Visualizing Logic. . .

and and or can be combined:
?− (X=adam ; X=eve ; has_bellybutton(X)), not_dead(X).

X=adam X=eve has_bellybutton(X)

not_dead(X)

This query asks

“Is there a person X who is adam, eve, or who has a

bellybutton, and who is also not dead?”

How does Prolog Answer
Questions?

Answering Questions

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron).

(5) logician(X) :- scientist(X).

(6) ?- logician(X), american(X).

The rule (5) states that

“Every scientist is a logician”

The question (6) asks

“Which scientist is a logician and an american?”

Answering Questions. . .

helder ron

American
nationals

Logicians

Scientists

Portugese
nationals



Answering Questions. . .

scientist(helder)

logician(X) american(X)

american(helder)

fail

X=helder

?− logician(X), american(X).

(6)

scientist(X)

(1)

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron).

(5) logician(X) :- scientist(X).

(6) ?- logician(X), american(X).

Answering Questions. . .

X=ron

(1) (2)

logician(X)

(6)

scientist(X)

?− logician(X), american(X).

scientist(ron)scientist(helder)

fail

american(helder)

american(X)

american(ron)

Answering Questions. . .

is record(planet waves). is record(desire).

is record(slow train).

recorded by(planet waves, bob dylan).

recorded by(desire, bob dylan).

recorded by(slow train, bob dylan).

recording year(planet waves, 1974).

recording year(desire, 1975).

recording year(slow train, 1979).

likes(christian, X) :-

is record(X), recorded by(X, bob dylan),

recording year(X, Year), Year < 1979.

Answering Questions. . .

?− likes(christian, X)

succeed

succeed

artist(X, bob_d) recording_year(X, Y) Y<1979

;

X = slow_train

X = desire

X = planet_waves

Y=1974

Y=1975

Y=1979

is_record(X)

fail



Answering Questions. . .

listens to(bob dylan, woody guthrie).

listens to(arlo guthrie, woody guthrie).

listens to(van morrison, bob dylan).

listens to(dire straits, bob dylan).

listens to(bruce springsteen, bob dylan).

listens to(björk, bruce springsteen).

(1) influenced by(X, Y) :- listens to(X, Y).

(2) influenced by(X, Y) :-

listens to(X, Z),

influenced by(Z, Y).

?- influenced by(bjork, bob dylan).

?- inf by(bjork, woody guthrie).

Answering Questions. . .

inf_by(Z, bob_d)l_to(bjork, bob_d)

fail

Z=bruce_s

l_to(bruce_s, bob_d)

succeed

?− inf_by(bjork, bob_d).

(1)

(1)

(2)

l_to(bjork, Z)

Z=bruce_s

Answering Questions. . .

(2)

inf_by(Z,woody_g)

succeed
l_to(bob_d, woody_g)

l_to(bjork, Z)

Z=bruce_s(1)

(2)

?− inf_by(bjork, woody_g).

l_to(bjork, woody_g) inf_by(Z, woody_g)

fail Z=bruce_s Z=bob_d
(1)

l_to(bruce_s, woody_g)

fail

l_to(bruce_s, Z)
Z=bob_d

Map Coloring

3

4

2

1

5

6

“Color a planar map with at most four colors, so that

contiguous regions are colored differently.”



Map Coloring. . .

A coloring is OK iff

1 The color of Region 1 6= the color of Region 2, and

2 The color of Region 1 6= the color of Region 3,...

color(R1, R2, R3, R4, R5, R6) :-

diff(R1, R2), diff(R1, R3), diff(R1, R5), diff(R1, R6),

diff(R2, R3), diff(R2, R4), diff(R2, R5), diff(R2, R6),

diff(R3, R4), diff(R3, R6), diff(R5, R6).

diff(red,blue). diff(red,green). diff(red,yellow).

diff(blue,red). diff(blue,green). diff(blue,yellow).

diff(green,red). diff(green,blue). diff(green,yellow).

diff(yellow, red).diff(yellow,blue). diff(yellow,green).

Map Coloring. . .

?- color(R1, R2, R3, R4, R5, R6).

R1 = R4 = red, R2 = blue,

R3 = R5 = green, R6 = yellow ;

R1 = red, R2 = blue,

R3 = R5 = green, R4 = R6 = yellow

3

blue

yellowgreen

red

green

red
4

2

1

5

6

Map Coloring – Backtracking

fail

diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

diff(R1,R6)
R6=blue

diff(R2,R3)

fail

R3=blue
diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

diff(R2,R3)

fail

color(R1, R2, R3, R4, R5, R6)

(1) (1) (1) (1)

R2=blue
R3=blue

color(R1, R2, R3, R4, R5, R6)

(1) (1) (1)

R2=blue
R3=blue(2)

diff(R1,R6)
R6=green

R6=yellow

R3=blue

Map Coloring – Backtracking

diff(R2,R3)

diff(R1,R3)

R2=blue

diff(R1,R2)
R1=red

diff(R2,R3)

fail

diff(R1,R5)
R5=green
R5=yellow
fail

R2=blue

diff(R1,R2)
R1=red

diff(R1,R5)
R5=blue

(1) (1)
R2=blue
R3=blue(2−3)

diff(R1,R6)
R6=blue,...

(1−3)

color(R1, R2, R3, R4, R5, R6)

(1) (1)

R2=blue

diff(R1,R6)

color(R1, R2, R3, R4, R5, R6)

(2)

diff(R1,R3)
R3=green

R3=green

R6=blue

(1)

R3=blue



Working with gprolog

gprolog can be downloaded from here: http://gprolog.inria.fr/.

gprolog is installed on lectura (it’s also on the Windows
machines) and is invoked like this:

> gprolog

GNU Prolog 1.2.16

| ?- [color].

| ?- listing.

go(A, B, C, D, E, F) :- next(A, B), ...

| ?- go(A,B,C,D,E,F).

A = red ...

Working with gprolog. . .

The command [color] loads the prolog program in the file
color.pl.

You should use the texteditor of your choice (emacs, vi,...)
to write your prolog code.

The command listing lists all the prolog predicates you
have loaded.

Working with gprolog. . . Readings and References

Read Clocksin-Mellish, Chapter 1-2.

http://dmoz.org/Computers/Programming/Languages/Prolog

Prolog by Example Coelho & Cotta

Prolog: Programming for AI Bratko

Programming in Prolog Clocksin & Mellish

The Craft of Prolog O’Keefe

Prolog for Programmers Kluzniak & Szpakowicz

Prolog Alan G. Hamilton

The Art of Prolog Sterling & Shapiro



Readings and References. . .

Computing with Logic Maier & Warren

Knowledge Systems Through Prolog Steven H. Kim

Natural Language Processing in Prolog Gazdar & Mellish

Language as a Cognitive Process Winograd

Prolog and Natural Language Analysis Pereira and Shieber

Computers and Human Language George W. Smith

Introduction to Logic Irving M. Copi

Beginning Logic E.J.Lemmon

Prolog So Far

A Prolog program consists of a number of clauses:

Rules Have head + body:
head

︷ ︸︸ ︷

likes(chris, X) :-

girl(X), black hair(X)
︸ ︷︷ ︸

body

Can be recursive
Facts Head but no body.

Always true.

Prolog So Far. . .

A clause consists of

atoms Start with lower-case letter.
variables Start with upper-case letter.

Prolog programs have a
Declarative meaning

The relations defined by the program

Procedural meaning

The order in which goals are tried

Prolog So Far. . .

A question consists of one or more goals:

?- likes(chris, X), smart(X).
"," means and
Use ";" to get all answers
Questions are either

Satisfiable (the goal succeeds)
Unsatisfiable (the goal fails)

Prolog answers questions (satisfies goals) by:

instantiating variables
searching the database sequentially
backtracking when a goal fails


