
University of Arizona, Department of Computer Science

CSc 372 — Assignment 3 — Due noon, Thu Oct 6 — 5%

Christian Collberg
October 5, 2011

1 Introduction

The purpose of this assignment is to learn to program using higher-order functions.

The following rules apply for this assignment:

1. Every function you write (except when explicitly noted) should be non-recursive. I.e.
functions will typically be implemented using higher-order functions from the standard
prelude, such as maps, folds, zips, etc.

2. You may freely introduce auxiliary functions if that makes your program cleaner. In particular, you
should introduce local definitions (where-clauses) to make your code easier to read.

3. You will be graded primarily on correctness and style, not on the execution efficiency of your code.

4. All functions (except when explicitly noted) should use Haskell’s pattern or guard syntax,
not the if-then-else syntax!

5. Functions written for one problem may be freely used in subsequent problems. In fact, this is encour-
aged!

6. All functions must be commented. At the very least, each function should start out with a description
of what it does, what input parameters it takes, what output it produces, and an example of how it is
invoked.

7. All functions (except local ones introduced by where must have a function signature.

8. You cannot change the signatures of any of the functions — they should be exactly as specified below!

9. Start by picking up the template Haskell script file from the course website.

The first part of the assignment (A) you should solve individually. The second part (B) you can work on in
teams of two.

NOTE: By Monday Sep 26, email the TAs with the names of the members
of your group.

You should hand in three files (ass3A.hs ass3B.hs TEAM), one for each part, and one file that lists the
names and CS IDs of the students in your team. Only one team member needs to hand in ass3B.hs.

1

2 A: Individual Problems

To get used to programming with the higher-order functions from the standard prelude, work these problems
by yourself!

1. Write a function maxl xs that generates an error "empty list" if xs==[] and otherwise returns the
largest element of xs: [1 point]

maxl :: (Ord a) => [a] -> a

maxl xs = ...

> maxl [2,3,4,5,1,2]

5

> maxl []

Program error: empty list

2. Write a function mull xs m which returns a new list containing the elements of xs multiplied by m:
[2 points]

mull :: (Num a) => [a] -> a -> [a]

mull xs x = ...

> mull [1,2,3,4,5] 0.0

[0.0,0.0,0.0,0.0,0.0]

> mull [1,2,3,4,5] 2

[2,4,6,8,10]

> mull [2.0,4.0,6.0,8.0,10.0] 5

[10.0,20.0,30.0,40.0,50.0]

3. In the definition of sumc below, use function composition to compute the sum of the cubes of all the
numbers divisible by 7 in a list xs of integers. [2 points]

sumc :: [Int] -> Int

sumc =

where cube x = ...

by7 x = ...

> sumc [7]

343

> sumc [7,14]

3087

> sumc [7,8,14]

3087

NOTE: In this case, I want the definition of sumc to look exactly as above.

2

4. Implement a function siever n xs which returns the elements of xs that are not multiples of n:
[2 points]

> siever 2 []

[]

> siever 2 [2..10]

[3,5,7,9]

> siever 3 [2..10]

[2,4,5,7,8,10]

NOTE: Use a lambda-expression in your implementation.

5. Re-implement the set-manipulation functions from assignment 2, but this time don’t use recursion!
You should implement, at least, these functions: [8 points]

makeSet :: Ord a => (a -> a-> Ordering) -> [a] -> [a]

isSet :: Ord a => (a -> a-> Ordering) -> [a] -> Bool

member :: Ord a => (a -> a-> Ordering) -> a - > [a] -> Bool

setIntersect :: Ord a => (a -> a-> Ordering) -> [a] -> [a] -> [a]

setUnion :: Ord a => (a -> a-> Ordering) -> [a] -> [a] -> [a]

setSubtract :: Ord a => (a -> a-> Ordering) -> [a] -> [a] -> [a]

setIsSubset :: Ord a => (a -> a-> Ordering) -> [a] -> [a] -> Bool

setSimilarity :: Ord a => (a -> a-> Ordering) -> [a] -> [a] -> Double

NOTE: Each of these functions (except for setSimilarity) must use at
least one of the higher-order functions from the standard prelude, such
as filter, map, zip, foldr, etc. In assignment 2, setSimilarity generated
an error if both the sets given to it were empty. This time, instead let
setSimilarity return 0.0. You can use the sort functions you implemented
in assignment 2, or, if you didn’t get them to work, use the sort functions
provided by Haskell.

6. Using only list comprehension (and, if you wish if-then-else) write a function row n v which returns
a list of n integers, all 0:s, except for the v:th element, which should be a 1 (you don’t have to test for
when n or v are out of range): [4 points]

row :: Int -> Int -> [Int]

> row 0 0

[]

> row 5 1

[1,0,0,0,0]

> row 5 2

[0,1,0,0,0]

> row 5 3

[0,0,1,0,0]

> row 5 4

[0,0,0,1,0]

> row 5 5

[0,0,0,0,1]

Using only set comprehension and the function row from above, write a function idmatrix n which
returns a square identity matrix of size n. I.e., idmatrix should return a list of lists, where all elements
are 0:s, except for the elements on the diagonal, which are all 1:

3

idmatrix :: Int -> [[Int]]

> idmatrix 0

[]

> idmatrix 1

[[1]]

> idmatrix 2

[[1,0],

[0,1]]

> idmatrix 3

[[1,0,0],

[0,1,0],

[0,0,1]]

> idmatrix 4

[[1,0,0,0],

[0,1,0,0],

[0,0,1,0],

[0,0,0,1]]

> idmatrix 5

[[1,0,0,0,0],

[0,1,0,0,0],

[0,0,1,0,0],

[0,0,0,1,0],

[0,0,0,0,1]]

NOTE: Your output will not look like this, I’ve just printed each row on
it’s own line to make it easier to read.

7. Implement functions to perform arithmetic on Peano Numbers. You can read more about Peano
Axioms here: http://en.wikipedia.org/wiki/Peano_axioms. The idea is very simple: the number
0 is represented by Zero, and all the following integers are represented by 1+ the previous integer.
“1+” is called Succ. Here are some examples: [6 points]

0 = Zero

1 = Succ Zero

2 = Succ(Succ Zero)

3 = Succ(Succ(Succ Zero))

4 = Succ(Succ(Succ(Succ Zero)))

5 = Succ(Succ(Succ(Succ(Succ Zero))))

Here is the Haskell recursive data type for natural numbers represented by the Peano Axioms:

data Nat =

Zero |

Succ Nat

deriving Show

Implement the following functions for conversion to and from “normal” integers, addition, multiplica-
tion, and comparisons for equality and less than:

4

toPeano :: Int -> Nat

fromPeano :: Nat -> Int

addPeano :: Nat -> Nat -> Nat

mulPeano :: Nat -> Nat -> Nat

peanoEQ :: Nat -> Nat -> Bool

peanoLT :: Nat -> Nat -> Bool

Here are some examples:

> toPeano 0

Zero

> toPeano 1

Succ Zero

> toPeano 2

Succ (Succ Zero)

> toPeano 3

Succ (Succ (Succ Zero))

> toPeano 4

Succ (Succ (Succ (Succ Zero)))

> toPeano 5

Succ (Succ (Succ (Succ (Succ Zero))))

> fromPeano Zero

0

> fromPeano (Succ (Succ (Succ (Succ Zero))))

4

> addPeano Zero Zero

Zero

> addPeano (Succ (Succ (Succ (Succ Zero)))) (Succ Zero)

Succ (Succ (Succ (Succ (Succ Zero))))

> fromPeano (addPeano (toPeano 5) (toPeano 6))

11

> mulPeano (toPeano 4) (toPeano 2)

Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

> fromPeano (mulPeano (toPeano 4) (toPeano 5))

20

> mulPeano Zero (Succ Zero)

Zero

> peanoEQ Zero Zero

True

> peanoEQ Zero (Succ Zero)

False

> peanoLT Zero (Succ Zero)

True

> peanoLT (toPeano 10) (toPeano 11)

True

NOTE: In these functions you are only allowed to use structural recursion

over the recursive data type. For example, implementing addPeano m n as
toPeano ((fromPeano m) + (fromPeano n)) will give you zero points.

HINT: You can use addPeano in the implementation of mulPeano.

5

3 B: TurnItOn

In this assignment you will write a clone of TurnItIn — the system used by English professors to catch
plagiarism of term papers. Later in the course you’ll see how a variant of this algorithm (known as MOSS)
can be used to catch cheating on programming assignments.

Comparing1 sets of k-grams of two documents is a popular method of computing their similarity. This idea
has been used for plagiarism detection of text documents and source code, for authorship analysis of code,
and for birthmark detection of executable code. A k-gram is a contiguous length k substring of the original
document. To illustrate the idea, consider the short document A consisting of the string yabbadabbadoo:

0 1 2 3 4 5 6 7 8 9 10 11 12

A: y a b b a d a b b a d o o

By sweeping a window of size 3 over A you get the set of 3-grams for A:

A: yab abb bba bad ada dab abb bba bad ado doo

We’ll also call these shingles. Here’s a second document C consisting of the string doobeedoobeedoo:

0 1 2 3 4 5 6 7 7 9 10 11 12 13 14

C: d o o b e e d o o b e e d o o

The shingles for this document are:

C: doo oob obe bee eed edo doo oob obe bee eed edo doo

What are the similarities between A and C? Well, that’s easy to see; just compare the sets of shingles! In
this case, the only shingle that appears both in A and C is doo: it occurs once in A and three times in C. This
could be a fluke, of course, but it could also be that we’ve just uncovered a case of plagiarism where doo was
copied three times from A into C.

How well this will work in practice depends on if you can choose a good value for k. If, in the previous
example, you’d have set k = 4 you wouldn’t have seen any similarity between A and C:

A: yabb abba bbad bada adab dabb abba bbad bado adoo

C: doob oobe obee beed eedo edoo doob oobe obee beed eedo edoo

How you choose k depends on the type of document you’re working on. In general, you need to choose k such
that common idioms of the document type have length less than k. This will filter out incidental similarities
such as the word the in English or if in source code.

The most interesting property of k-grams is that they’re somewhat insensitive to permutations. Say that,
in an effort to thwart you from detecting his attempts at plagiarism, the adversary reorders yabbadabbadoo
into bbadooyabbada. From this obfuscated document you now get this set of shingles:

1The following text has been shamelessly plagiarized from the (totally awesome) book Surreptitious Software: Obfuscation,

Watermarking, and Tamperproofing for Software Protection, by Christian Collberg and Jasvir Nagra, Addison-Wesley, 2009.
Thus, this is a case of self-plagiarism which you can read about in the (equally totally awsome) article Self-plagiarism in

computer science by Christian Collberg and Stephen Kobourov, Communications of the ACM, Volume 48, Issue 4 (April 2005).

6

A’: bba bad ado doo ooy oya yab abb bba bad ada

Notice how the doo 3-gram still remains intact. This means that you’ll compute the same rate of similarity
with document C as before!

In practice it will be too inefficient to compute and store all the shingles of a large document, or, in the
case of plagiarism detection, a large set of documents. Instead the shingles are first hashed and then a small
subset of them are kept for further analysis. For ease of exposition, in the examples in the remainder of this
section we’ll use the following function to compute hashes from shingles:

hash(s) =































obe ⇒ 15
bba ⇒ 3
ydo ⇒ 14
doo ⇒ 1
ado ⇒ 7
oob ⇒ 11

abb ⇒ 2
bad ⇒ 4
eed ⇒ 17
ada ⇒ 5
coo ⇒ 10
oby ⇒ 12

bee ⇒ 16
yab ⇒ 8
byd ⇒ 13
edo ⇒ 18
dab ⇒ 6
sco ⇒ 9

Using this function you can create a hash for each of the shingles in document A above:

A: yab abb bba bad ada dab abb bba bad ado doo

A0:8 A1:2 A2:3 A3:4 A4:5 A5:6 A6:2 A7:3 A8:4 A9:7 A10:1

The notation we use here is DP : V , where D is the name of the document from whence the shingle came,
P is the shingle’s position within D, and V is its value.

There will be approximately the same number of hashes as there are tokens in the original document. It
therefore becomes impractical to keep more than a small number of them. A common approach is to only
keep those that are 0 mod p, for some p. This has the disadvantage that there could be long gaps in a
document from which no hash is selected. A better approach is to use a technique known as winnowing.
The idea is to sweep a window of size W over the sequence of hashes and choose the smallest one from
each window (in case of ties, choose the rightmost smallest). This ensures that there’s no gap longer than
W + K − 1 between two selected hashes. Here are the windows of size 4 for document A above, where we’ve
marked the selected hashes in gray:

(A0:8 A1:2 A2:3 A3:4)

(A1:2 A2:3 A3:4 A4:5)

(A2:3 A3:4 A4:5 A5:6)

(A3:4 A4:5 A5:6 A6:2)

(A4:5 A5:6 A6:2 A7:3)
(A5:6 A6:2 A7:3 A8:4)
(A6:2 A7:3 A8:4 A9:7)

(A7:3 A8:4 A9:7 A10:1)

The final set of hashes chosen from A then becomes {A1:2, A2:3, A6:2, A10:1}.

3.1 Utility functions

We’ll start by implementing some useful functions that we will need later on.

7

1. Write a function windows k xs which generates a list of sublists of length k, by sweeping a window
across the list xs: [5 points]

windows :: Int -> [a] -> [[a]]

> windows 3 []

[]

> windows 3 [1..10]

[[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[7,8,9],[8,9,10]]

> windows 2 ["a","b","c","d","e"]

[["a","b"],["b","c"],["c","d"],["d","e"]]

HINT: Have a look at the commaInt function that we discussed in class.

2. Write a function mapAllPairs f xs which (essentially) computes the cross product of xs with itself
and then applies the function f to all the resulting pairs of elements. [5 points]

mapAllPairs :: (a -> a -> b) -> [a] -> [b]

> mapAllPairs (\ x y -> (x,y)) [1,2,3]

[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]

> mapAllPairs (\ x y -> x+y) [1,2,3]

[2,3,4,3,4,5,4,5,6]

> mapAllPairs (\ x y -> x++y) ["hi","bye","!"]

["hihi","hibye","hi!","byehi","byebye","bye!","!hi","!bye","!!"]

NOTE: You can use recursion and/or higher-order functions.

3. Re-implement the hash-function from assignment 2, this time without using recursion! [5 points]

type Hash = Int

type HashSet = [Hash]

hash :: String -> Hash

> hash "hello sailor!"

49012778

3.2 Reading documents

In order to compare documents for similarity, we first need to read them in! We represent a document by
its filename (a String). When store the text of the document itself as a list of the lines read, paired with the
line number:

type DocName = FilePath

type Line = (Int,String)

type Document = [Line]

1. Write a function splitLines xs which takes string with embedded newlines and splits it into a list of
Line:s: [5 points]

8

splitLines :: String -> Document

> splitLines ""

[]

> splitLines "aaa"

[(0,"aaa")]

> splitLines "aaa\nbbbbb\ncccccc\n"

[(0,"aaa"),(1,"bbbbb"),(2,"cccccc"),(3,"")]

NOTE: You can write this function recursively if you wish.

A function loadFiles have been provided for you. It takes a list of filenames and returns a list of tuples
(file-name,file-contents), using splitLines to split up each file:

loadFiles :: [DocName] -> IO [(DocName,Document)]

> loadFiles ["fred","frank"]

[("fred",[(0,"yabbadabbadoo")]),("frank",[(0,"doobeedoobeedoo")])]

3.3 Computing shingles

A shingle is a substring of the original document plus the position (a (row-number,column-number) tuple)
at which it occurs:

type Position = (Int, Int)

type Shingle = (String, Position)

The functions in this section compute lists of shingles from the text read from a file.

1. The function line2shingles extracts all the singles from a line of text by sweeping a window of size
K across it. [5 points]

line2shingles :: Int -> Line -> [Shingle]

> line2shingles 2 (5,"yabbad")

[("ya",(5,0)),("ab",(5,1)),("bb",(5,2)),("ba",(5,3)),("ad",(5,4))]

> line2shingles 3 (0,"yabbadabbadoo")

[("yab",(0,0)),("abb",(0,1)),("bba",(0,2)),("bad",(0,3)),

("ada",(0,4)),("dab",(0,5)),("abb",(0,6)),("bba",(0,7)),

("bad",(0,8)),("ado",(0,9)),("doo",(0,10))]

2. The function shingles uses the line2shingles function to extract all the shingles from a document
by sweeping a window of size K over each of the lines of text. [5 points]

shingles :: Int -> (DocName,Document) -> (DocName,[Shingle])

> shingles 3 ("fred", [(0,"yabb"),(1,"adabba"),(3,"doo")])

9

("fred",[("yab",(0,0)),("abb",(0,1)),("ada",(1,0)),

("dab",(1,1)),("abb",(1,2)),("bba",(1,3)),

("doo",(3,0))])

NOTE: For readability I’ve sometimes re-formatted the output ghci pro-
duces. When you run the same function calls the output is likely to look
different.

3. Given a list of shingles, the shingles2hashSet function converts it to a set of hash values using the
function hash above. There can be multiple shingles with the same string value (and hence the same
hash value) but the output of this function is a set, i.e. an ordered set of unique hashes. [5 points]

shingles2hashSet :: (DocName,[Shingle]) -> (DocName,HashSet)

> > hash "yab"

1321

> hash "abb"

1300

> shingles2hashSet ("fred",[("yab",(0,0)),("abb",(0,1)),("ada",(1,0)),

("dab",(1,1)),("abb",(1,2)),("bba",(1,3)),

("doo",(3,0))])

("fred",[1292,1297,1300,1321,1459])

3.4 Winnowing shingles

Usually, documents are large, and will result in way too many hashes being generated. Winnowing is any
technique for reducing the number of hashes. Depending on your application you may want to use different
winnowing algoriths. Every algorithm takes a list of shingles as input and returns a (usually smaller) list of
shingles.

The functionwinnowNone is the identity function, returning the same list of shingles as it is given. It’s been
defined for you:

type WinnowFun = (DocName,[Shingle]) -> (DocName,[Shingle])

winnowNone :: (DocName,[Shingle]) -> (DocName,[Shingle])

winnowNone (d,xs) = (d,xs)

1. Write a function winnowModPwhich returns only those shingles whose hash values is 0 mod p. [5 points]

winnowModP :: Int -> (DocName,[Shingle]) -> (DocName,[Shingle])

> hash "abb"

1300

> hash "dab"

1300

> winnowModP 5 ("fred",[("yab",(0,0)),("abb",(0,1)),("ada",(1,0)),

("dab",(1,1)),("abb",(1,2)),("bba",(1,3)),("doo",(3,0))])

("fred",[("abb",(0,1)),("dab",(1,1)),("abb",(1,2))])

10

NOTE: For extra credit (5 points) you can also write a func-
tion winnowWindow :: Int -> (DocName,[Shingle]) -> (DocName,[Shingle])

which sweeps a window of size p across the list of shingles and, for every
window, only keeps the rightmost shingle with the minimum value. (See
the example in the introduction.)

3.5 Most similar documents

Now we’re almost ready to write the first main function, called similar, which takes n documents, compares
them pairwise, and sorts them, most similar first! This function has been provided for you:

similar :: Int -> WinnowFun -> [DocName] -> IO [(DocName, DocName, Double)]

similar shingleSize winnowAlg fileNames = do

docs <- loadFiles fileNames

let w = moss shingleSize winnowAlg docs

return w

similar starts by reading in all the files in fileNames and then calls the moss function which computes
the similarity between each pair of documents. Notice that one of the arguments to moss is a winnowing
function — this means we can choose how to winnow at runtime.

Here’s an example of how to call similar:

> similar 2 winnowNone ["fred","frank"]

[("frank","frank",1.0),("fred","fred",1.0),

("frank","fred",0.2),("fred","frank",0.2)]

> similar 3 winnowNone ["fred","frank"]

[("frank","frank",1.0),("fred","fred",1.0),

("frank","fred",8.333333333333333e-2),

("fred","frank",8.333333333333333e-2)]

Notice how different window sizes give different results!

1. The function compareAllDocs do much of the heavy lifting. It takes a list of documents (tuples of
(docName, hash-set)), and compares all pairs of documents for similarity. The return value is a sorted
list of tuples (DocName1,DocName2,SimilarityScore). SimilarityScore is the value returned by the
setSimilarity function over the hash-sets of each pair of documents. The output list is sorted in
descending order by SimilarityScore. [5 points]

compareAllDocs :: [(DocName,HashSet)] -> [(DocName,DocName,Double)]

> compareAllDocs [("frank",[1331,1337,1341,1353,1427,1459]),

("fred",[1292,1297,1300,1316,1321,1423,1459])]

[("frank","frank",1.0),

("fred","fred",1.0),

("frank","fred",8.333333333333333e-2),

("fred","frank",8.333333333333333e-2)]

11

HINT: Remember mapAllPairs?

2. So, how do we go from a document (represented as a list of strings read from a file) to a list of shingles
to a set of hash-values? After all, compareAllDocs above works on sets of hash-values and nothing
else! Well, this is the job of the kgram function: [5 points]

kgram :: Int -> WinnowFun -> (DocName,Document) -> (DocName,HashSet)

kgram windowSize winnow =

> kgram 3 winnowNone ("fred",[(0,"yabbadabbadoo")])

("fred",[1292,1297,1300,1316,1321,1423,1459])

> kgram 3 (winnowModP 4) ("fred",[(0,"yabbadabbadoo")])

("fred",[1292,1300,1316])

> kgram 2 winnowNone ("fred",[(0,"yabbadabbadoo")])

("fred",[398,400,401,406,421,442,453])

> kgram 2 (winnowModP 4) ("fred",[(0,"yabbadabbadoo")])

("fred",[400])

HINT: kgram simply glues together functions we’ve already seen, namely
shingles (for generating the list of shingles), one of the winnowing func-
tions (passed as argument to kgram), and shingles2hashSet.

NOTE: Use function composition to implement kgram! kgram should be
declared exactly as shown above!

3. The moss function ties everything together by gluing together the compareAllDocs and kgram func-
tions. We use kgram to compute a set of hashes for each document and compareAllDocs to compute,
for every pair of documents, how similar they are. [5 points]

moss :: Int -> WinnowFun ->[(DocName,Document)] -> [(DocName,DocName,Double)]

moss windowSize winnowFun =

> moss 3 winnowNone [("fred",[(0,"yabbadabbadoo")]),

("frank",[(0,"doobeedoobeedoo")])]

[("frank","frank",1.0),

("fred","fred",1.0),

("frank","fred",8.333333333333333e-2),

("fred","frank",8.333333333333333e-2)]

NOTE: Use function composition to implement moss! moss should be de-
clared exactly as shown above!

3.6 Visualizing differences

Great! Professor Balthazar can now take all his students’ English essays, run them through the similar

function, and find that Alice and Bob’s essays are 83% similar, and that Charlie’s essay is 76% similar to the
Wikipedia article on Emily Brontë2. But now what? He needs to somehow convince them that they have,
in fact, plagiarized, that the evidence of their crime is overwhelming, and that it’s in their best interests to

2Bad Alice! Bad Bob! Bad Charlie! Bad! Bad!

12

confess to their transgressions. If they don’t confess then Professor Balthazar will have to go through tons
of paperwork and will, perhaps, have to take the case all the way to the Dean3

So, what should we do? We need to visualize the similarities between Alice and Bob’s files! This is done by
the visualize function, which has been provided for you:

visualize :: Int -> DocName -> DocName -> IO()

visualize shingleSize doc1name doc2name = do

let outfileName = doc1name ++ "-" ++ doc2name ++ ".html"

[doc1,doc2] <- loadFiles [doc1name,doc2name]

let shingles1 = shingles shingleSize doc1

let shingles2 = shingles shingleSize doc2

let common = commonStrings shingles1 shingles2

let regions1 = shingles2regions shingles1 common

let regions2 = shingles2regions shingles2 common

let html = showSimilarities doc1 regions1 doc2 regions2

writeFile outfileName html

visualize reads in two files, computes their similarities (by comparing the set of shingles), computes an
html string visualizing the similarities, and writes this string to a file. We can then load this file into a web
browser!

The function call

> visualize 3 "fred" "frank"

generates a file fred-frank.html. Here’s what it looks like:

To do the visualization we will be manipulating sets of Region tuples:

type Region = (Position,Int)

A Region is a tuple (pos,len) that represents a segment of a file starting in position pos (a (row,column)
tuple) and extending for len characters. For simplicity, a Region never extends past the end of a line.

3And, it’s well-known that the Dean plays golf with Charlie’s Dad at the countryclub every Sunday. Not good now that
Professor Balthazar’s promotion case is coming up for review.

13

The function inRegion has been provided for you:

inRegion :: Position -> Region -> Bool

inRegion (row,col) ((r,c),len) = row==r && col>=c && col<(c+len)

> inRegion (5,2) ((5,0),1)

False

> inRegion (5,2) ((5,0),2)

False

> inRegion (5,2) ((5,0),3)

True

> inRegion (5,2) ((4,1),99)

False

1. Write a function inRegions which takes a position pos and a list of Regions listOfRegions as
arguments and returns True if pos is within any of the regions in listOfRegions: [5 points]

inRegions :: Position -> [Region] -> Bool

> inRegions (5,2) [((5,0),2)]

False

> inRegions (5,2) [((5,0),2),((5,1),1)]

False

> inRegions (5,2) [((5,0),2),((5,1),2)]

True

2. The function commonStrings computes the set of all shingles (well, the strings of the shingles, to be
exact) that two documents have in common: [5 points]

commonStrings :: (DocName,[Shingle]) -> (DocName,[Shingle]) -> [String]

> let fred = shingles 3 ("fred",[(0,"yabbadabbadoo")])

> fred

("fred",[("yab",(0,0)),("abb",(0,1)),("bba",(0,2)),("bad",(0,3)),

("ada",(0,4)),("dab",(0,5)),("abb",(0,6)),("bba",(0,7)),

("bad",(0,8)),("ado",(0,9)),("doo",(0,10))])

> let frank = shingles 3 ("frank",[(0,"doobeedoobeedoo")])

> frank

("frank",[("doo",(0,0)),("oob",(0,1)),("obe",(0,2)),("bee",(0,3)),

("eed",(0,4)),("edo",(0,5)),("doo",(0,6)),("oob",(0,7)),

("obe",(0,8)),("bee",(0,9)),("eed",(0,10)),("edo",(0,11)),

("doo",(0,12))])

> commonStrings fred frank

["doo"]

HINT: Uh, I’m like returning a set and, like, it’s supposed to be the
intersection of like two other sets, and. . . ?

3. The function shingles2regions takes a document (represented by its list of shingles) and a set of
strings as input. It returns a list of regions where the strings in common occur in the document.

[5 points]

14

shingles2regions :: (DocName,[Shingle]) -> [String] -> [Region]

> let frank = shingles 3 ("frank",[(0,"doobeedoobeedoo")])

> frank

("frank",[("doo",(0,0)),("oob",(0,1)),("obe",(0,2)),("bee",(0,3)),

("eed",(0,4)),("edo",(0,5)),("doo",(0,6)),("oob",(0,7)),

("obe",(0,8)),("bee",(0,9)),("eed",(0,10)),("edo",(0,11)),

("doo",(0,12))])

> shingles2regions frank ["doo"]

[((0,0),3),((0,6),3),((0,12),3)]

> shingles2regions frank ["bee","doo"]

[((0,0),3),((0,3),3),((0,6),3),((0,9),3),((0,12),3)]

HINT: map and filter are your friends.

4. The function showSimilarities have been provided for you: [5 points]

showSimilarities :: (DocName,Document) -> [Region] -> (DocName,Document) -> [Region] -> String

showSimilarities (doc1name,doc1) reg1 (doc2name,doc2) reg2 = html

where

ann1 = highlight doc1 reg1

ann2 = highlight doc2 reg2

html = htmlTemplate (doc1name,ann1) (doc2name,ann2)

It takes two documents as input, along with regions that should be highlighted, and generates an html

string with the propper annotations.

The function highlightChar has also been provided for you:

highlightChar :: Char -> String

highlightChar x = "" ++ [x] ++ ""

highlightChar wraps a character in html that gives it a yellow background color.

The function htmlTemplate has also been provided for you. It returns a string containing html that
displays two documents side by side.

htmlTemplate :: (DocName,[String]) -> (DocName,[String]) -> String

htmlTemplate (doc1name,lines1) (doc2name,lines2)= "\

\<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">\n\

.....

Now, given these functions, you can write the function highlight which takes two arguments: doc

(a text document represented as (row,line) pairs) and regions (a list of ((row,column),length) tuples,
representing the regions of the document that should be highlighted). highlight should return a
string where each character c whose position lies within any of the regions has been highlighted (i.e.
replaced by the output of the highlightChar c function call).

highlight :: Document -> [Region] -> [String]

> putStr (unlines (highlight [(0,"doobeedoobeedoo")] [((0,0),3),((0,6),3),((0,12),3)]))

d

o

15

o

bee

d

o

o

bee

d

o

o

NOTE: You can write highlight recursively if you wish.

NOTE: For larger files, the visualization function is reaaaaallly slooooow.
For extra credits (5-10 points): speed it up!

4 Submission and Assessment

The deadline for this assignment is noon, Thu Oct 6. It is worth 5% of your final grade.

Create a zip-file named ass3.zip containing the files ass3A.hs ass3B.hs TEAM and upload it to d2l.arizona.edu.

The assignment will be evaluated using ghci on lectura. Make sure it works on lectura before handing it in
— the TAs are not required to debug your code.

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or the TA.

16

