
University of Arizona, Department of Computer Science

CSc 372 — Assignment 8 — Due 08:00, Tue Dec 6 — 5%

Christian Collberg
November 16, 2011

1 Introduction

In this assignment you will write your own Facebook/Orkut/Myspace/Friendster-clone, albeit a very min-
imalistic one. Your system will run on the department’s cgi server http://cgi.cs.arizona.edu and will
allow anyone to create a profile, edit it, browse others’ profiles, and add and delete friends.

• You are encouraged to work in pairs on this assignment.

• You should hand in your code as usual using d2l but we will grade this assignment interactively.

• Unlike previous assignments, 08:00, Tue Dec 6 is a hard deadline. There will be no

extensions.

• The assignment will be graded Tue, Dec 6 and Wed, Dec 7. We will pass around a signup sheet in
class where you can make an appointment with the graders to show your system.

2 CGI Programming

When you put a program (it can be written in C, Perl, Ruby, or whatever) in /cs/cgi/people/YOURLOGIN/

public_html/ you make it possible for anyone to connect to it and run it with a browser. There should
already be a script clock.cgi in your directory: try to run it by connecting to http://cgi.cs.arizona.

edu/~YOURLOGIN/clock.cgi!

Programs which can be run like this are called cgi-scripts. We will, of course, write ours in Ruby. Ruby has
a cgi-library that helps with (some of) the programming. Read about it in the text book, Chapter 18. The
cgi library is documented at http://www.ruby-doc.org/stdlib/libdoc/cgi/rdoc/index.html.

Conceptually, cgi programming is very easy. When you click on a SUBMIT button on a web page the script
is started up, any data that you have entered on the web site (name, password, credit card number, etc.) is
transfered in the form of name=value pairs to the script, the script does whatever processing it needs, and
then prints HTML on standard output which is then transfered back to the browser for display.

Cgi scripts are state-less, i.e. they don’t have any memory of what has happened previously. Every time
you hit SUBMIT the script is started up from the beginning. Any state information you need will have to be
stored in cookies, databases, etc.

Every web page has to be designed by writing HTML code. Special tags are used to create a form where
you can fill in data to be transfered to the cgi script. The <form>-tag begins and ends a form:

1

<form target="web.cgi">

username: <input type="text" name="username">

password: <input type="password" name="password">

<input type="submit" name="action" value="login">

<input type="hidden" name="username" value="">

</form>

You use the input-tag to get a box where you can type text:

<input type="text" name="username">

When the Ruby script gets invoked the text that the user entered can be extracted using

$cgi = CGI.new("html3")

username = $cgi[’username’]

I.e. the variable $cgi is a hashtable that holds all the data that the user has entered. This HTML creates
a box where we can enter a password:

<input type="password" name="password">

and this creates a button login :

<input type="submit" name="action" value="login">

When the user clicks on the login button, the script will start up and the action variable will hold the

string "login":

$cgi = CGI.new("html3")

action = $cgi[’action’]

if action == "login" then

...

Radio buttons are created like this:

sex: <input type="radio" name="sex" value="Male"> Male

<input type="radio" name="sex" value="Female"> Female

We can get the value (either Male or Female) like this:

$cgi = CGI.new("html3")

sex = $cgi[’sex’]

if sex == "Male" then

...

2

The final form element that we will be using is the pull-down-menu. It’s created using the select and
option tags:

<select name="nopants-how">

<option value="nohow">How did you meet?</option>

<option value="dated">dated</option>

<option value="random">met randomly</option>

<option value="friend">met through a friend</option>

<option value="family" selected>in my family</option>

<option value="group">in a group together</option>

<option value="work">worked together</option>

</select>

In the same way as previously, we can get the data that the user entered ("random" if the user chose "met

randomly", etc.) through the $cgi variable:

$cgi = CGI.new("html3")

how = $cgi[’nopants-how’]

if how == "random" then

...

Adding selected to one of the option-tags makes that the initial value.

The hidden tag is special — it doesn’t actually produce anything visible on the web page, it is simply used
to pass information from one invocation of the script to the next:

<input type="hidden" name="username" value="redhat">

In our implementation we use hidden to keep track of which user is logged in.

2.1 A Simple Example

Consider the Ruby cgi script in Figure 1. The first time it is run the user hasn’t entered any data, so the
left and right fields are empty. The generated HTML looks like this:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>
<center ><h1>Welcome to the c a l c u l a t o r !</h1></center >

<form ta r g e t=”ca l c . c g i ”>
<center >

<input type=”text ” name=” l e f t ” value=””>
<s e l e c t name=”op”>

<option value=”add” s e l e c t ed >+</option>

<option value=”mul” >∗</option>

</s e l e c t >

<input type=”text ” name=”r i gh t ” value=””>
=

<input type=”submit” name=”act i on ” value=”c a l c u l a t e ”>

</center >

</form>

</BODY></HTML>

3

The user then enters data, and hits the calculate button. The screen looks like this:

This time, the left and right cgi variables have values so we go ahead and compute the result and generate
new HTML, this time with left, right, op and value being filled in:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>
<center ><h1>Welcome to the c a l c u l a t o r !</h1></center >

<form ta r g e t=”ca l c . c g i ”>
<center >

<input type=”text ” name=” l e f t ” value=”6”>

<s e l e c t name=”op”>
<option value=”add” >+</option>

<option value=”mul” s e l e c t ed >∗</option>

</s e l e c t >

<input type=”text ” name=”r i gh t ” value=”7”>

=
42

<input type=”submit” name=”act i on ” value=”c a l c u l a t e ”>

</center >

</form>

</BODY></HTML>

The headers (DOCTYPE, etc.) are automatically generated by the $cgi.out method.

2.2 The department cgi server

calc.cgi is available on the assignment web page. You can upload it to your area on the cgi server and
try to run it from a browser. Be careful to set the ownership, permissions, and group to the correct values,
though, or the cgi server will refuse to run the script! This is what I have to do (replace collberg with your
own unix login):

cp calc.cgi /cs/cgi/people/collberg/public_html

chgrp wmark /cs/cgi/people/collberg/public_html

chgrp wmark /cs/cgi/people/collberg/public_html/calc.cgi

chmod u=rwx,g=xr,o=x /cs/cgi/people/collberg/public_html

chmod u=rwx,g=,o= /cs/cgi/people/collberg/public_html/calc.cgi

Similarly, this is what I do to set permissions for the facebook server:

4

#!/usr/bin/ruby

require ’cgi’

$cgi = CGI.new("html3")

def calcForm(left, op, right, value)

addselected = (op=="add")?"selected":""

mulselected = (op=="mul")?"selected":""

return <<-END

<center><h1>Welcome to the calculator!</h1></center>

<form target="calc.cgi">

<center>

<input type="text" name="left" value="#{left}">

<select name="op">

<option value="add" #{addselected}>+</option>

<option value="mul" #{mulselected}>*</option>

</select>

<input type="text" name="right" value="#{right}">

=

#{value}

<input type="submit" name="action" value="calculate">

</center>

</form>

END

end

if $cgi.has_key?(’left’) && $cgi.has_key?(’right’) then

left = $cgi[’left’].to_i()

right = $cgi[’right’].to_i()

op = $cgi[’op’]

if op == "add" then

value = (left + right).to_s

else

value = (left * right).to_s

end

else

left = ""

right = ""

op = "add"

value = ""

end

$cgi.out {

$cgi.html {

$cgi.body {

calcForm(left,op,right,value)

}

}

}

Figure 1: A simple web calculator cgi script, written in Ruby.

5

cp web.cgi /cs/cgi/people/collberg/public_html

chmod u=rwx,g=xr,o=x /cs/cgi/people/collberg/public_html

chmod u=rwx,g=,o= /cs/cgi/people/collberg/public_html/web.cgi

chgrp wmark /cs/cgi/people/collberg/public_html

chgrp wmark /cs/cgi/people/collberg/public_html/web.cgi

cp database.txt /cs/cgi/people/collberg/

chmod a+rwx /cs/cgi/people/collberg//database.txt

Your group should be whatever the unix groups command returns first — for me it’s wmark, for you probably
your login name.

• For this assignment, be particularly careful with your code when

you store it on the cgi server — always set permissions such that

no one else can read the script!

• First of all, add the command umask 077 to your .login file.

• Secondly, set the group and permissions as described above.

The makefile is set up to take care of this. Ideally, you should be able to just run

> make install

> make installcalc

and everything will just work! You can read more about the department’s cgi server and how to run scripts
on it here: http://www.cs.arizona.edu/computing/web/cgi.html

3 Overview

Have a look at Figure 2. No, wait. it’s really not that bad! The figure shows the five different
pages that our system can display, and how we can go from one to the other.

When we want to first access the 372book website we point our browser to

http://cgi.cs.arizona.edu/~YOURLOGIN/web.cgi

and we’re presented with the welcome-page. It has two buttons that will either take us to the login-page or
the create new account-page.

From the login-page we can go to the profile-page or, if the user enters an invalid username or password, back
to the login-page. The create new account-page functions similarly: we keep returning to this page until the
user enters a valid username (one that isn’t already in the database), password, etc.

The profile-page displays all the information about the logged in user. We can see his/her real name, sex, a
list of friends, and how many friends they have, directly or through one or two levels of indirection. There is

6

Display profile
of logged in user

Display profile
of logged in user

Display profile
of logged in user

Display profile
of logged in user Edit profile for

logged in user

On illegal data

On illegal data

Save edits

On illegal data

and show
user’s profile

Display profile
of other user

Figure 2: Overview.

7

one button for each friend, and clicking on it will take us back to the profile-page, but we will be displaying
one of the friends instead of the logged in user. Note that clicking on a friend button doesn’t change the

logged in user. The home -button also takes us back to the profile-page, but this time to the logged in

user’s page. The logout -button takes us back to the login page.

Clicking on the edit -button takes us to the edit page. It is similar to the profile-page, except that it

allows all information to be edited. All the current information about the user is preselected. Clicking on the

save edits -button saves all the data in the database file database.txt whereas the home -button

cancels the edits. In either case, we’re taken back to the user’s profile-page where the current information is
now displayed.

4 Getting Started

To get started, download the files web.cgi, database.txt, and makefile from the class web site.

Figure 3 shows the makefile. If you have never used a makefile before, don’t worry, it’s very simple — it’s
simply a way to store unix commands in one place so that you can use them later. Before you get started,
edit the file and change the USER from collberg to your own login.

It’s best to do as much debugging as possible off-line before you start running on the cgi server. The Ruby
cgi library has an offline mode where it reads the input to the script (in the form of name=value-pairs) from
standard input or from the command line and writes the generated HTML to standard output. I’ve coded
a couple of test-cases into the makefile — try typing make test1, make test2, etc.

When you are ready to try out your code on the department cgi server, simply type make install and the
files will be copied over. The cgi server is very picky about file naming (the script has to end in .cgi not .rb),
ownership, group, and permission, but (hopefully) the makefile sets this correctly for you! Once the files are
installed, you can connect to http://cgi.cs.arizona.edu/~YOURLOGIN/web.cgi. When something goes
wrong, unfortunately, you’re likely to get a cryptic and uninformative message. There is an error-log that
sometimes helps: type make errors to see it. Keep in mind, though, that the log is global for all cgi-scripts
running on the server!

We will not grade the individual parts of your code, only the program as a whole. So, feel

free to modify the template as you see fit. If you don’t like my coding “style,” go ahead and

use your own. Add methods and classes as you wish. You like commenting your code? Go

right ahead! The only thing that must remain constant is the external interface, so that we

can grade your code by pointing a browser to it.

5 The Welcome Screen [10 points]

In the next few sections of this handout I will describe each of the five screens, the HTML code that should
be generated for each of them, and what you need to code up. The welcome screen looks like this:

8

WEB = web.cgi

CALC = calc.cgi

DATABASE = database.txt

USER = collberg

CGI = /cs/cgi/people/${USER}

SCRIPTS = ${CGI}/public_html

DATA = ${CGI}/

GROUP = ‘groups | gawk ’{print $$1}’‘

LOCALSITE = http://localhost/~${USER}

DIRPERMS = u=rwx,g=xr,o=x

SCRIPTPERMS = u=rwx,g=,o=

##

Installing scripts on the CGI server

##

install: database.txt

cp ${WEB} ${SCRIPTS}

chmod ${DIRPERMS} ${SCRIPTS}

chmod ${SCRIPTPERMS} ${SCRIPTS}/${WEB}

chgrp ${GROUP} ${SCRIPTS}

chgrp ${GROUP} ${SCRIPTS}/${WEB}

cp database.txt ${DATA}

chmod a+rwx ${DATA}/${DATABASE}

errors:

tail /cs/cgi/logs/error_log

access:

tail /cs/cgi/logs/access_log

##

Test scripts

##

welcome page

test1: database.txt

ruby ${WEB} -w action=""

OK login

test2: database.txt

ruby ${WEB} -w action=login username=nopants password=feathers

wrong user

test3: database.txt

ruby ${WEB} -w action=login username=scrooge password=feathers

Figure 3: The makefile. The actual file contains more tests.

9

The HTML is also uncomplicated, just two submit buttons:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>

<center ><h1>Welcome to 372book</h1></center >

<form ta r g e t=”web . cg i ”>

<center >

<input type=”submit” name=”act i on ” value=”l og i n ”>
<input type=”submit” name=”act i on ” value=”c r ea t e account”>
<input type=”hidden” name=”username ” value=””>

</center >

</form>

</BODY></HTML>

You actually don’t have to do any coding to get this to run, the code has already been provided for you in
the web.cgi template you can pick up from the assignment web site. The code looks like this:

def Facebook.welcomeForm()

...

end

def Facebook.welcomeScreen()

writeHTML(welcomeForm())

end

The writeHTML() method tells the server to transfer the generated HTML to the user’s browser.

At the very bottom of web.cgi is the code that gets executed every time the user hits a submit -button:

action = $cgi["action"]

$username = $cgi[’username’]

case action

when "" then Facebook.welcomeScreen()

when "login" then Facebook.loginScreen()

...

end

We look up which submit button the user pressed and invoke the appropriate method.

10

6 The database

It’s time now to talk about the database itself! For simplicity, we’re just using a plain text file, database.txt,
which you can see in Figure 4. The database file is manipulated by the two classes User (which allows us to
create a user object storing all information about a single user) and Database which stores a hashtable of
all the known users:

class User

attr_reader :username, :name, :friends, :sex, :password

attr_writer :username, :name, :friends, :sex, :password

def initialize(username,name,friends,sex,password)

def to_out

end

class Database

def initialize

def [] (name)

def []= (name,user)

def users()

def exists_user?(name)

def load()

def save()

end

Database has methods for loading the text file and saving it again. The users() method yields all the users
in the database. The to out() method returns a user’s data as a string, in the format of Figure 4.

7 The Login Screen [10 points]

The login-screen looks like this:

11

USERNAME bluehat

NAME "Dewey Duck"

SEX Male

PASSWORD wood

FRIENDS nopants/family greenhat/family redhat/family

END

##

USERNAME lonelygirl13

NAME "Daisy Duck"

SEX Female

PASSWORD sailorboy

FRIENDS nopants/dated cheeseboy/random

END

##

USERNAME nopants

NAME "Donald Duck"

SEX Male

PASSWORD feathers

FRIENDS bluehat/family lonelygirl13/dated greenhat/family cheeseboy/friend redhat/family

END

##

USERNAME greenhat

NAME "Louie Duck"

SEX Male

PASSWORD chuck

FRIENDS bluehat/family nopants/family redhat/family

END

##

USERNAME redhat

NAME "Huey Duck"

SEX Male

PASSWORD junior

FRIENDS bluehat/family nopants/family greenhat/family

END

##

USERNAME cheeseboy

NAME "Mickey Mouse"

SEX Male

PASSWORD cheddar

FRIENDS lonelygirl13/random nopants/friend

END

##

Figure 4: The file database.txt.

12

and the generated HTML like this:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>

<center >

<h1>Log in to 372book</h1>

<f ont co l o r=”red”>

<form ta r g e t=”web . cg i ”>

username : <input type=”text ” name=”username”>

password : <input type=”password ” name=”password”>

<input type=”submit” name=”act i on ” value=”l og i n ”>
<input type=”hidden” name=”username ” value=””>

</form>

</center >

</BODY></HTML>

We keep returning to this page until the user enters a valid username and password:

Below is the template code. You only need to supply the Facebook.login method, the rest has been given
to you:

This method returns two values, the first one is true

if login was successful, false otherwise. The second

argument is an error message useful when the login was

unsuccessful. (Yes, using exceptions might be better,

but I hate exceptions.)

Error messages returned:

"cannot log in #{username}: no such user"

"cannot log in #{username}: wrong password"

def Facebook.login(username,password)

YOUR CODE HERE

end

Return the HTML for the login screen. "message"

is an error message (in case the user has made

an unsuccessful login attempt). Leave it blank

the first time.

def Facebook.loginForm(message)

def Facebook.loginScreen()

username = $cgi["username"]

password = $cgi["password"]

if username != "" then

13

Facebook.load()

ok, message = Facebook.login(username,password)

if ok then

Facebook.profileScreen(username)

else

writeHTML(loginForm(message))

end

else

writeHTML(loginForm(""))

end

end

Note how we’re loading the database using Facebook.load(). We have to do this every time the script exe-
cutes. Why is that? Because, as we noted earlier, the scripts don’t remember anything between executions.

8 The Create Account Screen [20 points]

The create-account-screen is very similar to the login-screen:

There are several error conditions we must check for:

14

On any error we return to the create-account-screen.

Here’s the generated HTML:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>

<center >

<h1>Create new account </h1>

<f ont co l o r=”red”>

<form ta r g e t=”web . cg i ”>

username : <input type=”text ” name=”username”>

name : <input type=”text ” name=”realname”>

password : <input type=”password ” name=”password”>

sex : <input type=”rad io ” name=”sex ” value=”Male”> Male

<input type=”rad io ” name=”sex ” value=”Female”> Female

<input type=”submit” name=”act i on ” value=”save account”>
<input type=”hidden” name=”username ” value=””>

</form>

</BODY></HTML>

Here’s the code you have to write:

A username consists of a letter (upper or lower case)

followed by at least one or more letters or digits.

def Facebook.okUsername(un)

A password consists of four or moour letters or digits.

def Facebook.okPassword(pw)

Sex is one of Male or Female.

def Facebook.okSex(sex)

user is an obejct of type User, containing all the

information gathered about the new user. We return

two values, a boolean which is true if the

user has been successfully added to the Database

and false otherwise. On a failed attempt, one of

these error messages is generated:

"cannot create #{username}: user already exists"

"cannot create #{username}: illegal username"

"cannot create #{username}: illegal password"

"cannot create #{username}: choose Male or Female"

def Facebook.createUser(user)

15

Return the HTML for the create user screen. "message"

is an error message. Leave it blank the first time.

def Facebook.createForm(message)

...

<input type="submit" name="action" value="save account">

...

end

This is where we arrive the first time the user hits the

create account button:

def Facebook.createScreen()

After the user has filled in data into the account screen

and hits "create account", we’ll arrive here. We check

for valid data and either go to the profile screen (if

all was OK) or back to the create account screen if there

was an error.

def Facebook.saveCreatedUser()

Note the Facebook.createForm(message)-code. The value of the action cgi variable is set to save

account. This is so that we’ll go to Facebook.saveCreatedUser() to save the values that user has filled
into the form.

9 The Profile Screen [30 points]

This is what the profile-screen looks like, followed by the corresponding HTML:

16

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>

<center ><h1>Pr o f i l e f o r bluehat </h1></center >

<form ta r g e t=”web . cg i ”>

< l i > name : Dewey Duck
< l i > sex : Male
< l i > f r i e n d s :

<table >

<tr>

<td> nopants </td>

<td> Donald Duck </td>

<td> i n my fami ly </td>

<td> <input type=”submit” name=”act i on ” value=”view nopants”> </td>

</tr>

.
</table >

< l i > 3 immediate f r i e n d s .
< l i > 2 f r i e nd s o f f r i e nd s .
< l i > No f r i e n d s o f f r i e nd s o f f r i e nd s .

<center >

<input type=”submit” name=”act i on ” value=”home”>
<input type=”submit” name=”act i on ” value=”ed i t ”>
<input type=”submit” name=”act i on ” value=”logout”>
<input type=”hidden” name=”username ” value=”bluehat”>

</center >

</form>

</BODY></HTML>

Note that I want you to be grammatical when you print out the number of friends! I.e., get the singular/plural
correct!

17

10 The Edit Screen [30 points]

This is what the edit-screen looks like:

and the generated HTML:

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 3.2 F ina l //EN”><HTML><BODY>

<center ><h1>Edit your p r o f i l e i n f ormat i on </h1></center >

<form ta r g e t=”web . cg i ”>

< l i > name : <input type=”text ” name=”name” value=”Dewey Duck”>
< l i > sex : <input type=”rad io ” name=”sex ” value=”Male” checked> Male

<input type=”rad io ” name=”sex ” value=”Female” > Female

< l i > password : <input type=”text ” name=”password ” value=”wood”>
< l i > f r i e n d s :

<table >

<tr>

<td> nopants (Donald Duck)</td>

<td> <input type=”rad io ” name=”nopants− i s f r i e n d ” value=”yes ” checked> Friend </td>

<td> <input type=”rad io ” name=”nopants− i s f r i e n d ” value=”no” > Not f r i end </td>

<td> <s e l e c t name=”nopants−how”>
<option value=”nohow” >How did you meet?</option>

<option value=”dated” >dated</option>

<option value=”random” >met randomly</option>

<option value=”f r i e nd ” >met through a f r i end </option>

<option value=”fami ly ” s e l e c t ed >i n my fami ly</option>

<option value=”group” >i n a group together </option>

<option value=”work” >worked together </option>

</s e l e c t ></td>

</tr>

<tr>

<td> l o n e l y g i r l 1 3 (Daisy Duck)</td>

.
</tr>

18

. .
</table >

<center >

<input type=”submit” name=”act i on ” value=”save ed i t s ”>
<input type=”submit” name=”act i on ” value=”home”>
<input type=”submit” name=”act i on ” value=”logout”>
<input type=”hidden” name=”username ” value=”bluehat”>

</center >

</BODY></HTML>

11 Submission and Assessment

The deadline for this assignment is 08:00, Tue Dec 6. It is worth 5% of your final grade.

You should submit the assignment using d2l.arizona.edu. The README file should give the members of
your team.

The assignment will be graded Tue, Dec 6 and Wed, Dec 7. You should set up an appointment with the TA
for a slot to show your program.

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or the TA.

19

