
CSc 372

Comparative Programming Languages

15 : Haskell — List Comprehension

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

September 14, 2011

List Comprehensions

Haskell has a notation called list comprehension (adapted
from mathematics where it is used to construct sets) that is
very convenient to describe certain kinds of lists. Syntax:

[expr | qualifier, qualifier, · · ·]

In English, this reads:

“Generate a list where the elements are of the form

expr , such that the elements fulfill the conditions in

the qualifier s.”

The expression can be any valid Haskell expression.

The qualifiers can have three different forms: Generators,
Filters, and Local Definitions.

Generator Qualifiers

Generate a number of elements that can be used in the
expression part of the list comprehension. Syntax:

pattern <- list expr

The pattern is often a simple variable. The list expr is
often an arithmetic sequence.

[n | n<-[1..5]] ⇒ [1,2,3,4,5]

[n*n | n<-[1..5]] ⇒ [1,4,9,16,25]

[(n,n*n) | n<-[1..3]] ⇒ [(1,1),(2,4),(3,9)]

Filter Qualifiers

A filter is a boolean expression that removes elements that
would otherwise have been included in the list comprehension.
We often use a generator to produce a sequence of elements,
and a filter to remove elements which are not needed.

[n*n | n<-[1..9],even n] ⇒ [4,16,36,64]

[(n,n*n) | n<-[1..3],n<n*n] ⇒ [(2,4),(3,9)]

collberg@gmail.com

Local Definitions

We can define a local variable within the list comprehension.
Example:

[n*n | let n = 2] ⇒ [4]

Qualifiers

Earlier generators (those to the left) vary more slowly than
later ones. Compare nested for-loops in procedural languages,
where earlier (outer) loop indexes vary more slowly than later
(inner) ones.

Pascal:

for i := 1 to 9 do

for j := 1 to 3 do

print (i, j)

Haskell:

[(i,j) | i<-[1..9], j<-[1..3]] ⇒

[(1,1),(1,2),(1,3),

(2,1),(2,2),(2,3),

· · ·

(9,1),(9,2),(9,3)]

Qualifiers. . .

Qualifiers to the right may use values generated by qualifiers
to the left. Compare Pascal where inner loops may use index
values generated by outer loops.

Pascal:

for i := 1 to 3 do

for j := i to 4 do

print (i, j)

Haskell:

[(i,j) | i<-[1..3], j<-[i..4]] ⇒

[(1,1),(1,2),(1,3),(1,4)

(2,2),(2,3),(2,4),

(3,3),(3,4)]

[n*n | n<-[1..10], even n] ⇒ [4,16,36,64,100]

Example

Define a function doublePos xs that doubles the positive
elements in a list of integers.

In English:

“Generate a list of elements of the form 2*x, where the

x:s are the positive elements from the list xs.

In Haskell:

doublePos :: [Int] -> [Int]

doublePos xs = [2*x | x<-xs, x>0]

> doublePos [-1,-2,1,2,3]

[2,4,6]

Note that xs is a list-valued expression.

Example

Define a function spaces n which returns a string of n
spaces.

Example:

> spaces 10

" "

Haskell:

spaces :: Int -> String

spaces n = [’ ’ | i <- [1..n]]

Note that the expression part of the comprehension is of type
Char.

Note that the generated values of i are never used.

Example

Define a function factors n which returns a list of the
integers that divide n. Omit the trivial factors 1 and n.

Examples:

factors 5 ⇒ []

factors 100 ⇒ [2,4,5,10,20,25,50]

In Haskell:

factors :: Int -> [Int]

factors n = [i | i<-[2..n-1], n ‘mod‘ i == 0]

Example

Pythagorean Triads:

Generate a list of triples (x , y , z) such that x2 + y2 = z2 and
x , y , z ≤ n.

triads n = [(x,y,z)|

x<-[1..n], y<-[1..n], z<-[1..n],

x^2 + y^2 == z^2]

triads 5 ⇒ [(3,4,5),(4,3,5)]

Example. . .

We can easily avoid generating duplicates:

triads’ n = [(x,y,z)|

x<-[1..n], y<-[x..n], z<-[y..n],

x^2 + y^2 == z^2]

triads’ 11 ⇒ [(3,4,5), (6,8,10)]

Example – Making Change

Write a function change that computes the optimal
(smallest) set of coins to make up a certain amount.

Defining available (UK) coins:

type Coin = Int

coins :: [Coin]

coins = reverse (sort [1,2,5,10,20,50,100])

Example:

> change 23

[20,2,1]

> coins

[100,50,20,10,5,2,1]

> all change 4

[[2,2],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1]]

Example – Making Change. . .

all change returns all the possible ways of combining coins
to make a certain amount.

all change returns shortest list first. Hence change becomes
simple:

change amount = head (all change amount)

all change returns all possible (decreasing sequences) of
change for the given amount.

all change :: Int -> [[Coin]]

all change 0 = [[]]

all change amount = [c:cs |

c<-coins, amount>=c,

cs<-all change (amount - c)]

Example – Making Change. . .

all change works by recursion from within a list
comprehension. To make change for an amount amount we

1 Find the largest coin c ≤ amount: c<-coins,amount>=c.
2 Find how much we now have left to make change for:

amount - c .
3 Compute all the ways to make change from the new amount:

cs<-all change (amount - c)
4 Combine c and cs: c:cs .

Example – Making Change. . .

If there is more than one coin c ≤ amount, then
c<-coins,amount>=c will produce all of them. Each such
coin will then be combined with all possible ways to make
change from amount - c .

coins returns the available coins in reverse order. Hence
all change will try larger coins first, and return shorter lists
first.

all change :: Int -> [[Coin]]

all change 0 = [[]]

all change amount = [c:cs |

c<-coins, amount>=c,

cs<-all change (amount - c)]

Summary

A list comprehension [e|q] generates a list where all the
elements have the form e , and fulfill the requirements of the
qualifier q . q can be a generator x<-list in which case x
takes on the values in list one at a time. Or, q can be a a
boolean expression that filters out unwanted values.

Homework

Show the lists generated by the following Haskell list
expressions.

1 [n*n | n<-[1..10],even n]

2 [7 | n<-[1..4]]

3 [(x,y) | x<-[1..3], y<-[4..7]]

4 [(m,n) | m<-[1..3], n<-[1..m]]

5 [j | i<-[1,-1,2,-2], i>0, j<-[1..i]]

6 [a+b | (a,b)<-[(1,2),(3,4),(5,6)]]

Homework

Use a list comprehension to define a function neglist xs

that computes the number of negative elements in a list xs.

Template:

neglist :: [Int] -> Int

neglist n = · · ·

Examples:

> neglist [1,2,3,4,5]

0

> neglist [1,-3,-4,3,4,-5]

3

Homework

Use a list comprehension to define a function gensquares

low high that generates a list of squares of all the even
numbers from a given lower limit low to an upper limit high.

Template:

gensquares :: Int -> Int -> [Int]

gensquares low high = [· · · | · · ·]

Examples:

> gensquares 2 5

[4, 16]

> gensquares 3 10

[16, 36, 64, 100]

