
CSc 372

Comparative Programming Languages

16 : Haskell — Exercises

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

September 20, 2011

List Prefix

Write a recursive function begin xs ys that returns true if
xs is a prefix of ys. Both lists are lists of integers. Include the
type signature.

> begin [] []

True

> begin [1] []

False

> begin [1,2] [1,2,3,4]

True

> begin [1,2] [1,1,2,3,4]

False

> begin [1,2,3,4] [1,2]

List Containment

Write a recursive function subsequence xs ys that returns
true if xs occurs anywhere within ys. Both lists are lists of
integers. Include the type signature.

Hint: reuse begin from the previous exercise.

> subsequence [] []

True

> subsequence [1] []

False

> subsequence [1] [0,1,0]

True

> subsequence [1,2,3] [0,1,0,1,2,3,5]

True

Mystery

Consider the following function:

mystery :: [a] -> [[a]]

mystery [] = [[]]

mystery (x:xs) = sets ++ (map (x:) sets)

where sets = mystery xs

What would mystery [1,2] return? mystery [1,2,3]?

What does the funtion compute?

collberg@gmail.com

foldr

Explain what the following expressions involving foldr do:
1 foldr (:) [] xs
2 foldr (:) xs ys
3 foldr (y ys -> ys ++ [y]) [] xs

shorter

Define a function shorter xs ys that returns the shorter of
two lists.

> shorter [1,2] [1]

[1]

> shorter [1,2] [1,2,3]

[1,2]

stripEmpty

Write function stripEmpty xs that removes all empty strings
from xs, a list of strings.

> stripEmpty ["", "Hello", "", "", "World!"]

["Hello","World!"]

> stripEmpty [""]

[]

> stripeEmpty []

[]

merge

Write function merge xs ys that takes two ordered lists xs
and ys and returns an ordered list containing the elements
from xs and ys, without duplicates

> merge [1,2] [3,4]

[1,2,3,4]

> merge [1,2,3] [3,4]

[1,2,3,4]

> merge [1,2] [1,2,4]

[1,2,4]

Function Composition

Rewrite the expression

map f (map g xs)

so that only a single call to map is used

Reduce

Let the Haskell function reduce be defined by

reduce f [] v = v

reduce f (x:xs) v = f x (reduce f xs v)

Reconstruct the Haskell functions length, append, filter, and
map using reduce. More precisely, complete the following
schemata (in the simplest possible way):

mylength xs = reduce ___ xs ___

myappend xs ys = reduce ___ xs ___

myfilter p xs = reduce ___ xs ___

mymap f xs = reduce ___ xs ___

372 Midterm 2004 – Problem 1

Write a non-recursive function

invert :: [Bool] -> [Bool]

that turns all True values into False, and False values into
True. Example:

> invert [True,False]

[False,True]

372 Midterm 2004 – Problem 2

Write a non-recursive function count p xs that takes a
predicate p and a list xs of elements (of arbitrary type) as
arguments and returns the number of elements in the list that
satisfies p:

> count even [1,2,3,4,5]

2

Ideally, you should define the function using composition of
higher-order functions from the standard prelude!

372 Midterm 2004 – Problem 3

Write a non-recursive function blend xs ys that takes two
lists of elements (of arbitrary type) as argument, and returns a
list where the elements have been taken alternatingly from xs

and ys:

> blend [1,2,3] [4,5,6]

[1,4,2,5,3,6]

You can assume that xs and ys are of the same length.

372 Midterm 2004 – Problem 4

Write a function adjpairs that takes a list as argument and
returns the list of all pairs of adjacent elements. Examples:

> adjpairs []

[]

> adjpairs [1]

[]

> adjpairs [1,2]

[(1,2)]

> adjpairs [1,2,3]

[(1,2),(2,3)]

> adjpairs [1,2,3,4,5,6]

[(1,2), (2,3), (3,4), (4,5), (5,6)]

Give both a recursive and a non-recursive solution!

372 Midterm 2004 – Problem 5

Write a non-recursive function section f c xs that extracts
a sublist of the list xs starting at position f and which is c
elements long. Use 0-based indexing. Assume that xs has at
least f+c elements. Examples:

> section 0 1 [1,2,3,4,5]

[1]

> section 0 3 [1,2,3,4,5]

[1,2,3]

> section 1 3 [1,2,3,4,5]

[2,3,4]

> section 4 1 [1,2,3,4,5]

[5]

372 Midterm 2004 – Problem 6

Given these Haskell function definitions

duh :: [Int] -> Int -> [[Int]]

duh xs a = duh’ xs a []

duh’ [] _ [] = []

duh’ [] _ xs = [xs]

duh’ (x:xs) a ys

| a == x = nut ys (duh’ xs a [])

| otherwise = duh’ xs a (ys ++ [x])

nut [] xs = xs

nut xs ys = xs : ys

372 Midterm 2004 – Problem 6. . .

answer these questions:

1 What is the result of nut [] [[1,2]]?

2 What is the result of nut [2] [[1,2]]?

3 What is the most general type of nut?

4 What is the result of duh [1,2,3] 1?

5 What is the result of duh [1,2,3,1,4] 1?

372 Midterm 2004 – Problem 7

What are the results of these Haskell expressions?

1 filter p [[1],[1,2],[1,2,3],[1,2,3,4]]

where p xs = length xs > 2

2 filter (not . even . length) xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]

3 foldr (\ xs i -> length xs + i) 0 xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]

4 iterate id 1

5 (fst. head . zip [1,2,3]) [4,5,6]

372 Final 2004 – Problem 1

Given these Haskell function definitions

mystery :: [a] -> [[a]]

mystery xs = [take n xs,drop n xs]

where n = h xs

h :: [a] -> Int

h [] = 0

h [_] = 0

h (_:_:xs) = 1 + h xs

what does the expression

mystery [1,2,3,4,5]

return?

372 Final 2004 – Problem 2

1 What is referential transparency? Illustrate with an Icon
procedure and a Haskell function.

2 Haskell is a lazy language. What does this mean?

