CSc 372

Comparative Programming Languages What is Prolog?

17 : Prolog — Introduction

Department of Computer Science
University of Arizona

Copyright © 2011 Christian Collberg

Christian Collberg

What is Prolog? What is Prolog?

Algorithm = Logic + Control Robert A. Kowalski

Prescriptive Languages:

@ Describe how to solve problem
@ Pascal, C, Ada,...
@ Also: Imperative, Procedural

@ Prolog is a language which approaches problem-solving in a
declarative manner. The idea is to define what the problem is,

rather than how it should be solved.
Descriptive Languages:

@ Describe what should be done
@ Also: Declarative

@ In practice, most Prolog programs have a procedural as well as
a declarative component — the procedural aspects are often
necessary in order to make the programs execute efficiently.

Kowalski's equation says that
@ Logic — is the specification (what the program should do)
@ Control — what we need to do in order to make our logic
execute efficiently. This usually includes imposing an
execution order on the rules that make up our program.

collberg@gmail.com

Objects & Relationships

Prolog programs deal with

Objects & Relationships o objects, and

@ relationships between objects

English:
“Christian likes the record”

Prolog:

likes(christian, record).

Record Database

@ Here's an excerpt from Christian’s record database:

is_record(planet_waves) .

Fa CtS is_record(desire).

is_record(slow_train).

recorded by (planet_waves, bob_dylan).
recorded by(desire, bob_dylan).
recorded by(slow_train, bob_dylan).

recording year(planet_waves, 1974).
recording year(desire, 1975).
recording year (slow_train, 1979).

Record Database. . .

@ The data base contains unary facts (is_record) and binary

facts (recorded by, recording year). Condltlonal Relatlonshlps

@ The fact
is_record(slow_train)
can be interpreted as
slow_train <s-a-record

@ The fact recording_year (slow_train, 1979) can be
interpreted as the recording year of slow_train was 1979.

Conditional Relationships Conditional Relationships. . .

: . . . °
@ Prolog programs deal with conditional relationships between The rule

likes(christian, X) :-

objects.
. is_record(X),
English: recorded by (X, bob._dylan),
“C. likes Bob Dylan records recorded before 1979" recording year (X, Year),
Prolog: Year < 1979.
can be restated as
likes(christian, X) :- “Christian likes X, if X is a record, and X is recorded
is_record(X), by Bob Dylan, and the recording year is before
recorded by (X, bob._dylan), 1979.”
recording year (X, Year),
Year < 1979. @ Variables start with capital letters.

o Comma (") is read as and.

Asking Questions

Asking Questions. . .

English:

“Was Planet Waves recorded by Bob Dylan?”
“When was Planet Waves recorded?”
“Which album was recorded in 19747"

Prolog:

?- recorded_by(planet_waves, bob._dylan).
yes

?7- recording year(planet_waves, X).
X = 1974

?- recording year (X, 1974).
X = planet_waves

Asking Questions

Prolog programs

@ solve problems by asking questions.

English:
“Does Christian like the albums Planet Waves & Slow
Train?’
Prolog:

?- likes(christian, planet waves).
yes

?- likes(christian, slow_train).
no

Asking Questions. . .

In Prolog
@ "," (a comma), means "and’
English:
“Did Bob Dylan record an album in 19747"

Prolog:

?- is_record(X),
recorded by (X, bob_dylan),
recording_year (X, 1974).
yes

Asking Questions. . . Asking Questions. . .

Sometimes answers have more than one part:
English:
o Use ";" to get all answers. “List the albums and their artists!”
English:
“What does Christian like?”

Sometimes a query has more than one answer:

Prolog:

?7- is_record(X), recorded by(X, Y).

Prolog X = planet_waves,
?7- likes(christian, X). Y = bob_dylan ;
X = planet_waves ; X = desire,
Y = bob_dylan ;
X = desire ; X = slow_train,
Y = bob_dylan ;
no no

Recursive Rules

“People are influenced by the music they listen to.
People are influenced by the music listened to by the
people they listen to.”

Recursive Rules

listens_to(bob._dylan, woody_guthrie).
listens_to(arlo_guthrie, woody_guthrie).
listens_to(van morrison, bob._dylan).
listens_to(dire_straits, bob._dylan).
listens_to(bruce_springsteen, bob_dylan).
listens_to(bjoérk, bruce_springsteen).

influenced by (X, Y) :- listens to(X, Y).
influenced by(X, Y) :- listens_to(X,Z),
influenced by(Z,Y).

Asking Questions. . .

English:
“Is Bjork influenced by Bob Dylan?”

“Is Bjork influenced by Woody Guthrie?”

“Is Bob Dylan influenced by Bruce Springsteen?”

Prolog:

7- influenced by(bjork, bob._dylan).

yes

7- influenced by(bjork, woody_guthrie).
yes

?7- influenced_by(bob_dylan, bruce.s).
no

Visualizing Logic. . .

@ To visualize what happens when Prolog executes (and this can
often be very complicated!) we use the following two

notations:
AND OR
?- first, second. ?- first; second.
/ .\
first second first second

@ For AND, both legs have to succeed.

@ For OR, one of the legs has to succeed.

Visualizing Logic

@ Comma (,) is read as and in Prolog. Example: The rule
person(X) :- has bellybutton(X), not_dead(X).

is read as
“X is a person if X has a bellybutton and X is not
dead.”

@ Semicolon (;) is read as or in Prolog. The rule
person(X) :- X=adam ; X=eve ;
has_bellybutton(X) .
is read as
“X'is a person if X is adam or X is eve or X has a
bellybutton.”

Visualizing Logic. . .

@ Here are two examples:

AND OR
?- X=adam ; X=eve ;
?- has_bellybutton(X), not_dead(X). has_bellybutton(X).
[J
has_bellybutton(X) not_dead(X) X=adam X=eve has_bellybutton(X)

Visualizing Logic. . .

@ and and or can be combined:

?- (X=adam ; X=eve ; has_bellybutton(X)), not_dead(X). H OW d Oes P ro | Og A n Swe r
* Questions?

/(/ not_dead(X)

X=adam X=eve has_bellybutton(X)

@ This query asks

“Is there a person X who is adam, eve, or who has a
bellybutton, and who is also not dead?”

Answering Questions Answering Questions. . .

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron).

(6) logician(X) :- scientist(X).
(6) 7- logician(X), american(X).

Portugese
nationals

American
nationals
@ The rule (5) states that

“Every scientist is a logician”

@ The question (6) asks

“Which scientist is a logician and an american?”

Answering Questions. . .

?- logician(X), american(X).

--- z

 logician(X) S/ 7~ | american(X)
I // \A \

(6) ‘ / X=helder

| scientist(X) /// //

I‘\ 1) /// american(helder)

\ -

- fail
scientist(helder)

(1) scientist(helder).

(2) scientist(ron).

(3) portuguese(helder).

(4) american(ron) .

(5) logician(X) :- scientist(X).
(6) 7- logician(X), american(X).

Answering Questions. . .

Answering Questions. . .

?- logician(X), american(X).

A
/. AN
—> N

logician(X) T amerlcan(X)\ .
// ,// \\ \\
’ SN NN
® \ .7 X=ron »
\\ . \\)
', american(helder) N

scientist(X) \

. N fail american(ron)
Q) K@

scientist(helder) scientist(ron)

Answering Questions. . .

is_record(planet_waves). is_record(desire).
is_record(slow_train).

recorded by (planet_waves, bob._dylan).
recorded by (desire, bob_dylan).
recorded_by(slow_train, bob_dylan).

recording year (planet waves, 1974).
recording year (desire, 1975).
recording year(slow_train, 1979).

likes(christian, X) :-
is_record(X), recorded by(X, bob.dylan),
recording year(X, Year), Year < 1979.

?- likes(christian, X)

is_record(X) artist(X, bob_d) recording_year(X, Y) Y<1979
X = planet_waves Y=1979 succeed
X = desire Y=1975 succeed
X =slow_train Y=1974 fail

Answering Questions. . .

listens_to(bob_dylan, woody_guthrie).
listens_to(arlo_guthrie, woody_guthrie).
listens_to(vanmorrison, bob_dylan).
listens_to(dire_straits, bob._dylan).
listens_to(bruce_springsteen, bob_dylan) .
listens_to(bjoérk, bruce_springsteen).

(1) influenced by(X, Y) :- listens to(X, Y).
(2) influenced by(X, Y) :-

listens_to(X, Z),

influenced by(Z, Y).

?7- influenced by(bjork, bob._dylan).
?7- inf by(bjork, woody_guthrie).

Answering Questions. . .

Answering Questions. . .

?-inf_by(bjork, bob_d).

|_to(bjork, bob_d) I_to(bjork, Z) inf_by(Z, bob_d)

. Z=bruce_s NN
fail - . N
Q) IR
\ \\
@ .
\

|_to(bruce_s, bob_d) '

succeed

Map Coloring

?-inf_by(bjork, woody_g).

(1) < N\® Z=bruce_s
2
|_to(bjork, woody_g) |_to(bjork, Z) inf_by(Z, woody_g)
fail Z=bruce_s ° Z=bob_d
(1) 73}
|_to(bruce_s, woody_g) |_to(bruce_s, Z) inf_by(Z,W(\)\ody_g)
fail Z=bob_d g)\‘5\

|_to(bob_d, woody_g)
succeed

1

“Color a planar map with at most four colors, so that
contiguous regions are colored differently.”

Map Coloring. .. Map Coloring. ..

A coloring is OK iff
@ The color of Region 1 # the color of Region 2, and ?- color(R1, R2, R3, R4, RS, R6).

. . R1 = R4 = red, R2 = blue
Th | f R 1 +#£ th | f R 3,... ’ ?
Qo e color of Region 1 = the color of Region B3 = RS green, R6 = yellow ;

color(R1, R2, R3, R4, R5, R6) :-
diff(R1, R2), diff(R1, R3), diff(R1, R5), diff(R1, R6), R1
diff (R2, R3), diff(R2, R4), diff(R2, R5), diff(R2, R6), R3
diff (R3, R4), diff(R3, R6), diff(R5, R6).

red, R2 = blue,
R5 = green, R4 = R6 = yellow

diff(red,blue). diff(red,green). diff(red,yellow).

diff (blue,red). diff(blue,green). diff(blue,yellow).
diff(green,red). diff(green,blue). diff(green,yellow).
diff(yellow, red).diff(yellow,blue). diff(yellow,green).

Map Coloring — Backtracking Map Coloring — Backtracking

color(R1, R2, R3, R4, R5, R6) color(R1, R2, R3, R4, R5, R6)
o ®\e é R2=blue L o ®\e ® R2=blue
(1 (1) (l) (1) R3=blue ((1) (2_3) (1_3) R3=blue
diff(R1,R2) diff(R1,R3) diff(R1,R5) diff(R1,R6) diff(R2,R3) diff(R1,R2) diff(R1,R3) diff(R1,R5) diff(R1,R6) diff(R2,R3)
R1=red R3=blue R5=blue R6=blue fail Ri1=red R3=blue R5=green R6=blue,... fail
R2=blue R2=blue R5=yellow

fail

color(R1, R2, R3, R4, R5, R6) color(R1, R2, R3, R4, R5, R6)

YA ry R2=blue

2=b
@ @ &) @ R3=blue R2=blue

R3=green
diff(R1,R2) diff(R1,R3) diff(R1,R5) diff(R1,R6) diff(R2,R3)
R1l=red R3=blue R5=blue R6=green fail
R2=blue R6=yellow

fail

diff(R1,R2) diff(R1,R3) diff(R1,R5) diff(R1,R6) diff(R2,R3)
Ri1=red R3=green R5=blue R6=blue
R2=blue

Working with gprolog

Working with gprolog. ..

M gprolog can be dOWhloaded from here: http://gprolog.inria.fr/.
@ gprolog is installed on lectura (it's also on the Windows

. . . . @ The command [color] loads the prolog program in the file
machines) and is invoked like this: color.pl.
> gprolog
GNU Prolog 1.2.16
| ?- [color].
| 7- listing. @ The command listing lists all the prolog predicates you
go(A, B, C, D, E, F) :- next(A, B), ... have loaded.
| 7- go(A,B,C,D,E,F).
A = red

@ You should use the texteditor of your choice (emacs, vi,...)
to write your prolog code.

Working with gprolog. .. Readings and References

] Sy [SIETE |
File Edit View Terminal Tabs Help

> emacs color.pl &

[1] 23990

> gprolo

GNU Prolog 1.2.16

By Daniel Diaz

Copyright (C) 1999-2002 Daniel Diaz

| 7~ [color].

compiling /home/collberg/teaching/languages/arizo

@ Read Clocksin-Mellish, Chapter 1-2.
;:u;:?:z‘:iiberg/tsaching{languages/arizuna/372—QUﬂ

es read - 2532 bytes written, 38

@ http://dmoz.org/Computers/Programming/Languages/Prolog
ves
| 7~ Listing. -
= o el
go(A, Evn;v(tl?;\vﬁé)? := | Buffers Files Tools Edit Search Hule Help Prolog by Exam ple COeIhO & Cotta
i oyl Fext(red, blue) .
next(A, E), nextired, green). H
next(red, yellow) . .
s D Prolog: Programming for Al Bratko
' ' next(blue, red).
next(B, D), next(blue, green).
next(B, E), next (blue, yellow).
next(B, F),
next(C, D), next(green, red) .
next(C, F), next (gresn, blue) .

Programming in Prolog Clocksin & Mellish
mnext(E, F). next(green, yellow).

;
The Craft of Prolog O'Keefe
mext(red, blue). mext(yellow, red).
mext(red, green). next(yellow, blue).
next(red, yellow). next(yellow, green).

next(blue, red).

Prolog for Programmers Kluzniak & Szpakowicz
next(blue, green). 20(RL, RZ,(RS, R45 RS, R?) . . , . , -
port(viue, yello. PR B e RR Mol B i R, Prolog Alan G. Hamilton
nm(green' bine) ngxgggg, Eg;, next(R3, R&),
mecRE | The Art of Prolog Sterling & Shapiro
next (yellow, blue).
mext(yellow, green). = 15PN Perl) g

Bl
s
| ?- go(A,B,C,D,E,F).
A = red
B = blue
C = green
D = red
E = green
F = yellow 7 []

http://gprolog.inria.fr/
http://dmoz.org/Computers/Programming/Languages/Prolog

Readings and References. . . Prolog So Far

Computing with Logic Maier & Warren @ A Prolog program consists of a number of clauses:

Knowledge Systems Through Prolog Steven H. Kim Rules o Have head + body:
Natural Language Processing in Prolog ~ Gazdar & Mellish head

Language as a Cognitive Process Winograd likes(chris, X) :-
Prolog and Natural Language Analysis Pereira and Shieber girl(X), black-hair(X)
Computers and Human Language George W. Smith body
Introduction to Logic Irving M. Copi o Can be recursive
Beginning Logic E.J.Lemmon Facts o Head but no body.

©

Always true.

Prolog So Far. .. Prolog So Far. ..

@ A question consists of one or more goals:
o A clause consists of o 7- likes(chris, X), smart(X).
atoms Start with lower-case letter. "," means and

CJ
variables Start with upper-case letter. o Use ";" to get all answers
o Questions are either

@ Satisfiable (the goal succeeds)
@ Unsatisfiable (the goal fails)
o Prolog answers questions (satisfies goals) by:

. . . @ instantiating variables
o The order in which goals are tried @ searching the database sequentially
@ backtracking when a goal fails

@ Prolog programs have a
o Declarative meaning

@ The relations defined by the program
@ Procedural meaning

