Comparative Programming Languages

19 : Prolog - Structures

Department of Computer Science
University of Arizona

Christian Collberg

Prolog Structures

- Aka, structured or compound objects
- An object with several components.
- Similar to Pascal's Record-type, C's struct, Haskell's tuples.
- Used to group things together.
functor arguments
- $\overbrace{\text { course }} \overbrace{\text { (prolog, chris,mon, 11) }}$
- The arity of a functor is the number of arguments.

Introduction

Structures - Courses

- Below is a database of courses and when they meet. Write the following predicates:
- lectures(Lecturer, Day) succeeds if Lecturer has a class on Day.
- duration(Course, Length) computes how many hours Course meets.
- occupied(Room, Day, Time) succeeds if Room is being used on Day at Time.
\% course(class, meetingtime, prof, hall).
course(c231, time(mon,4,5), cc, plt1).
course(c231, time(wed,10,11), cc, plt1).
course (c231, time (thu, 4,5), cc, plt1).
course(c363, time(mon,11,12), cc, slt1).
course(c363, time(thu,11,12), cc, slt1).

Structures - Courses.

```
lectures(Lecturer, Day) :-
    course(Course, time(Day,_,_), Lecturer, _).
duration(Course, Length) :-
    course(Course,
            time(Day,Start,Finish), Lec, Loc),
    Length is Finish - Start.
occupied(Room, Day, Time) :-
    course(Course,
            time(Day,Start,Finish), Lec, Room),
    Start =< Time,
    Time =< Finish.
```


Structures - Courses.

```
course(c231, time(mon,4,5), cc, plt1).
course(c231, time(wed,10,11), cc, plt1).
course(c231, time(thu,4,5), cc, plt1).
course(c363, time(mon,11,12), cc, slt1).
course(c363, time(thu,11,12), cc, slt1).
?- occupied(slt1, mon, 11).
yes
?- lectures(cc, mon).
yes
```


Binary Trees

- We can represent trees as nested structures:
tree(Element, Left, Right)
tree(s,
\quad tree (b, void, void),
\quad tree (x,
\quad tree (u, void, void),
\quad void).

Binary Search Trees.

```
tree_member(X, tree(X,_, _)).
tree_member(X, tree(Y,Left,_)) :-
    X < Y,
    tree_member(Y, Left).
tree_member(X, tree(Y,_,Right)) :-
    X > Y,
    tree_member(Y, Right).
```


Binary Search Trees

- Write a predicate member (T, x) that succeeds if x is a member of the binary search tree T :

Binary Trees - Isomorphism

Tree isomorphism:

Two binary trees T_{1} and T_{2} are isomorphic if T_{2} can be obtained by reordering the branches of the subtrees of T_{1}.

- Write a predicate tree_iso(T1, T2) that succeeds if the two trees are isomorphic.

Binary Trees - Isomorphism.

```
tree_iso(void, void).
tree_iso(tree(X, L1, R1), tree(X, L2, R2)) :-
    tree_iso(L1, L2), tree_iso(R1, R2).
tree_iso(tree(X, L1, R1), tree(X, L2, R2)) :-
    tree_iso(L1, R2), tree_iso(R1, L2).
```

(1) Check if the roots of the current subtrees are identical;
(2) Check if the subtrees are isomorphic;
(3) If they are not, backtrack, swap the subtrees, and again check if they are isomorphic.

Binary Trees - Counting Nodes

- Write a predicate size_of_tree(Tree,Size) which computes the number of nodes in a tree.
size_of_tree(Tree, Size) :-
size_of_tree(Tree, 0, Size).
size_of_tree(void, Size, Size).
size_of_tree(tree(_, L, R), SizeIn, SizeOut) :Size1 is SizeIn + 1,
size_of_tree(L, Size1, Size2),
size_of_tree(R, Size2, SizeOut).
- We use a so-called accumulator pair to pass around the current size of the tree.

Binary Trees - Tree Substitution

- Write a predicate subs (T1,T2,01d,New) which replaces all occurences of Old with New in tree T1:
subs(X, Y, void, void).
subs(X, Y, tree(X, L1, R1), tree(Y, L2, R2)) :subs ($\mathrm{X}, \mathrm{Y}, \mathrm{L} 1, \mathrm{~L} 2$), subs ($\mathrm{X}, \mathrm{Y}, \mathrm{R} 1, \mathrm{R} 2$).
subs(X, Y, tree(Z, L1, R1), tree(Z, L2, R2)) :$X=\backslash=Y, \operatorname{subs}(X, Y, L 1, L 2)$, subs ($\mathrm{X}, \mathrm{Y}, \mathrm{R} 1, \mathrm{R} 2$).

Symbolic Differentiation

$$
\begin{align*}
\frac{\mathrm{d} c}{\mathrm{~d} x} & =0 \tag{1}\\
\frac{\mathrm{~d} x}{\mathrm{~d} x} & =1 \tag{2}\\
\frac{\mathrm{~d}\left(U^{c}\right)}{\mathrm{d} x} & =c U^{c-1} \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{3}\\
\frac{\mathrm{~d}(-U)}{\mathrm{d} x} & =-\frac{\mathrm{d} U}{\mathrm{~d} x} \tag{4}\\
\frac{\mathrm{~d}(U+V)}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x}+\frac{\mathrm{d} V}{\mathrm{~d} x} \tag{5}\\
\frac{\mathrm{~d}(U-V)}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x}-\frac{\mathrm{d} U}{\mathrm{~d} x} \tag{6}
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{d}(c U)}{\mathrm{d} x} & =c \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{7}\\
\frac{\mathrm{~d}(U V)}{\mathrm{d} x} & =U \frac{\mathrm{~d} V}{\mathrm{~d} x}+V \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{8}\\
\frac{\mathrm{~d}\left(\frac{U}{V}\right)}{\mathrm{d} x} & =\frac{V \frac{\mathrm{~d} U}{\mathrm{~d} x}-U \frac{\mathrm{~d} V}{\mathrm{~d} x}}{V^{2}} \tag{9}\\
\frac{\mathrm{~d}(\ln U)}{\mathrm{d} x} & =U^{-1} \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{10}\\
\frac{\mathrm{~d}(\sin (U))}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x} \cos (U) \tag{11}\\
\frac{\mathrm{d}(\cos (U))}{\mathrm{d} x} & =-\frac{\mathrm{d} U}{\mathrm{~d} x} \sin (U) \tag{12}
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{d} c}{\mathrm{~d} x} & =0 \tag{1}\\
\frac{\mathrm{~d} x}{\mathrm{dx}} & =1 \tag{2}\\
\frac{\mathrm{~d}\left(U^{c}\right)}{\mathrm{d} x} & =c U^{c-1} \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{3}
\end{align*}
$$

```
deriv(C, X, 0) :- number(C).
deriv(X, X, 1).
deriv(U ^C, X, C * U `L * DU) :-
    number(C), L is C - 1, deriv(U, X, DU).
```

Symbolic Differentiation.

$$
\begin{align*}
\frac{\mathrm{d}(U-V)}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x}-\frac{\mathrm{d} V}{\mathrm{~d} x} \tag{6}\\
\frac{\mathrm{~d}(c U)}{\mathrm{d} x} & =c \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{7}
\end{align*}
$$

deriv(U-V, X, \qquad _) :-
<left as an exercise>
deriv(C*U, X, \qquad _) :-
<left as an exercise>

$$
\begin{align*}
\frac{\mathrm{d}(-U)}{\mathrm{d} x} & =-\frac{\mathrm{d} U}{\mathrm{~d} x} \tag{4}\\
\frac{\mathrm{~d}(U+V)}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x}+\frac{\mathrm{d} V}{\mathrm{~d} x} \tag{5}
\end{align*}
$$

deriv(-U, X, -DU) :-
deriv(U, X, DU).
deriv(U+V, X, DU + DV) :-
deriv(U, X, DU),
deriv(V, X, DV).

Symbolic Differentiation.

$$
\begin{align*}
\frac{\mathrm{d}(U V)}{\mathrm{d} x} & =U \frac{\mathrm{~d} V}{\mathrm{~d} x}+V \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{8}\\
\frac{\mathrm{~d}\left(\frac{U}{V}\right)}{\mathrm{d} x} & =\frac{V \frac{\mathrm{~d} U}{\mathrm{~d} x}-U \frac{\mathrm{~d} V}{\mathrm{~d} x}}{V^{2}} \tag{9}
\end{align*}
$$

deriv(U*V, X, \qquad _) :-
<left as an exercise>
deriv(U/V, X, \qquad _) :-
<left as an exercise>

Symbolic Differentiation.

$$
\begin{align*}
\frac{\mathrm{d}(\ln U)}{\mathrm{d} x} & =U^{-1} \frac{\mathrm{~d} U}{\mathrm{~d} x} \tag{10}\\
\frac{\mathrm{~d}(\sin (U))}{\mathrm{d} x} & =\frac{\mathrm{d} U}{\mathrm{~d} x} \cos (U) \tag{11}\\
\frac{\mathrm{d}(\cos (U))}{\mathrm{d} x} & =-\frac{\mathrm{d} U}{\mathrm{~d} x} \sin (U) \tag{12}
\end{align*}
$$

$\operatorname{deriv}(\log (U), X, \ldots-\ldots):-<l e f t$ as an exercise>
$\operatorname{deriv}(\sin (U), X, \ldots-\ldots):-<l e f t$ as an exercise>
$\operatorname{deriv}(\cos (U), X, \ldots-\ldots):-<l e f t$ as an exercise>
\qquad

Symbolic Differentiation

```
?- deriv(x, x, D).
    D = 1
?- deriv(sin(x), x, D).
    D = 1*\operatorname{cos(x)}
?- deriv(sin(x) + cos(x), x, D).
    D = 1*\operatorname{cos}(x)+ (-1*sin(x))
?- deriv(sin(x) * cos(x), x, D).
    D = sin(x)* (-1*\operatorname{sin}(x)) +cos(x)* (1*\operatorname{cos}(x))
?- deriv(1 / x, x, D).
    D = (x*0-1*1)/ (x*x)
```


Symbolic Differentiation.

```
?- deriv(1/sin(x), x, D).
    D = (sin (x)*0-1* (1*\operatorname{cos}(x)))+(\operatorname{sin}(\textrm{x})*\operatorname{sin}(\textrm{x}))
?- deriv(x ^3, x, D).
    D = 1*3*x^2
?- deriv(x^3 + x^2 + 1, x, D).
    D = 1*3*x^2+1*2*x^1+0
?- deriv(3 * x ` 3, x, D).
    D = 3* (1*3*x^2) +x^3*0
?- deriv(4* x ^3 + 4* x^2 + x - 1, x, D).
    D = 4* (1*3*x^2) +x^3*0+(4* (1*2*x^1) +x^2*0)+1-0
```


Summary

- Read Clocksin-Mellish, Sections 2.1.3, 3.1.

Prolog So Far

- Prolog terms:
- atoms (a, 1, 3.14)
- structures
guitar (ovation, 1111, 1975)
- Infix expressions are abbreviations of "normal" Prolog terms:

infix	prefix
$a+b$	$+(a, b)$
$a+b * c$	$+(a, \quad *(b, c))$

