CSc 372

Comparative Programming Languages

22 : Prolog — Lists

Department of Computer Science
University of Arizona

Copyright © 2011 Christian Collberg

Christian Collberg

Prolog Lists
Haskell:
>1: 2: 3: []
[1,2,3]
Prolog:

A\
- L= .(a, .(b, .(c, [1D))
7- L a b c b/\.

L = [a, b, c]
/N
¢

@ Both Haskell and Prolog build up lists using cons-cells.
@ In Haskell the cons-operator is :, in Prolog ..

Introduction

Prolog Lists. . .

7- L= .(a, .C.CL, .2, 1)), .(b, .(c, [ID)N
L =[a, [1, 2], b, c]

a./'\.
1/>\ b/\
211 /N
1

@ Unlike Haskell, Prolog lists can contain elements of arbitrary
type.

collberg@gmail.com

Matching Lists — [Head | Taill Matching Lists — [Head | Taill...

A F A = F variable subst. A F A= F variable subst.
[1] yes [a, b, c] [H | T] yes H=a,T=[b,c]
[1 a no la, [1, 211 [H | T] yes H=a, T=[[1, 2]]
[al (] no [[1, 2], al] [H | T] yes H=[1,2], T=[a]
(1] (] no [a, b, c] X, Y, c] yes X=a, Y=c
[a] [b, c]] L yes L=[a,b,c] [a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c
[a] [H | T] yes H=a, T=[] [a, b] [X, c] no

Prolog Lists — Member

(1) memberi1(X, [YI]) :- X =Y.
Member (2) [_1Y]) :- memberi(X, Y).

member1 (X,

(&D) member2 (X, [X|_.]).
(2) member2(X, [_1Y]) :- member2(X, Y).

(1) member3(X,[Y|Z]) :- X = Y; member3(X,Z).

Prolog Lists — Member. . .

Prolog Lists — Member. . .

?- member(x, [a, b, c, x, fl).
yes

?- member(x, [a, b, c, f]).

no

?7- member(x, [a, [x, y], f1).
no

?- member(Z, [a, [x, yl, f1).

Z = a
Z = [x, yl]
Z =f

Append

menber 1(x, [a, b, x, d])
(1) ~— (2)

menber 1(x, [al _]) member1(x, [_|[b,x,d]])

X=a
menber (x, [b, x, d])
(1 (2)

member 1(x, [b|_]) nenmberdl(x,[_|[x,d]])

x‘zb (y/\"/ T

manber‘l(x, [x]_1)

X=X

succeed

Prolog Lists — Append

foll oned by makes
this one this one this one

N\ v

append(L1, L2, L3).

(1) append([], L, L)
(2) append ([X|L1], L2, [XI|L3]) :-
append (L1, L2, L3).

@ Appending L onto an empty list, makes L.
@ To append L, onto L; to make L3

@ Let the first element of L1 be the first element of L3.
@ Append L, onto the rest of L; to make the rest of Ls.

Prolog Lists — Append. .. Prolog Lists — Append. ..

(la, bl. [1, 2], U Lo L=[a,b,1,2]
apptia, b, 144 L=[a, b, 1,2] R
A

<> 7) B
(1) (2) app([a, b], [1, 2], L)

app([1.L,L) app([al[b]],[1,2],[a|7|_3])

app([al [b]].[1,2]. [4]L3])
app([b],[1,2], LSQ
() (2 app([b]1[11,[1, 2], [b] L3'])
app([],L, L) app([bl[]].[1,2], [bIL3 1) R

fai V s app([1.11,2],[1,2])
T

7- L = 3], L3 = [b | 1L3’], L3’ = .
app([1.[1.2].[1.2]) e | L3 o | L] ;e

= [a,b,1,2], L3 = [b,1,2], 13’ = [1,2]

Prolog Lists — Using Append Prolog Lists — Using Append. ..

© append([a,b]l, [1,2], L)

@ What's the result of appending [1,2] onto [a,b]? © append(L, [1,2], [a,b,1,2])
@ append([a,bl,[1,2],[a,b,1,2]) @ What do we need to append [1,2] onto to make [a,b,1,2]7
o Is [a,b,1,2] the result of appending [1,2] onto [a,b]? @ What's the result of removing the suffix [1,2] from
s Py Ly 4 ’ : [a,b,1,2]?

© append([a,b]l, L, [a,b,1,2])
o What do we need to append onto [a,b] to make [a,b,1,2]7

@ What's the result of removing the prefix [a,b] from
[a,b,1,2]7

© append(L1, L2, [a,b,1,2])
o How can the list [a,b,1,2] be split into two lists L1 & L27

Prolog Lists — Using Append. .. Prolog Lists — Using Append. ..

app([a, b], L,_[a b, 1, 2])

(1) % "("2;"\ ?- append(L1, L2, [a,b,cl).
\ L1 = []
app([],l_, L) app([al[b]]!in[aI[b! 1! 2]]) L2 = [a’b,c] ;
4
,
// L1 = [a]
app([b],LZ’:[b, 1,2]) L2 = [b,c] ;
1
((2 L1 = [a,b]
app([],L,L) app([bl[]],L2"",[bl[1,2]]) L2 = [c] ;
7

‘ L1 = [a,b,c]

app([],L2 ',[1%2‘];); L2 = 1 ;

(1 o
app([].[1,2],[1,2])

succeed

no

Prolog Lists — Using Append. .. Prolog Lists — Reusing Append

app(L1, L2, [a, b, 1, 2])
(1) (2)

app([1.[a b,1,2] app([alLl],L2,[al[b,1,2]])
[a,b,1,2]) member Can we split the list Y into two lists such that X is at

the head of the second list?

app(L1,L2',[b,1,2]) adjacent Can we split the list Z into two lists such that the two
(1 (2) element X and Y are at the head of the second list?
last Can we split the list Y into two lists such that the
app([1,[b, 1,2] app([bl L1]1,L2" ", [b|[1,2]]) first list contains all the elements except the last one,
[b,1,2]) \ and X is the sole member of the second list?
app(LL L2, [1,2])
(1)

app([].[1,2],[1,2])

succeed

Prolog Lists — Reusing Append. ..

member (X, Y) :- append(_, [XIZ], Y).

?- member(x, [a,b,x,d]). ReverS|ng d I_ISt

adjacent(X, Y, Z) :- append(_, [X,YIQ], 2).
?7- adjacent(x,y, [a,b,x,y,d]).

last(X, Y) :- append(_, [X], Y).
?7- last(x, [a,b,x]).

Prolog Lists — Reverse Prolog Lists — Reverse. . .

@ reversel works like this:

reversel is known as naive reverse. @ Reverse the tail of the list.

. A d the head of the list to th d tail.
reversel is quadratic in the number of elements in the list. @ Append the head of the list to the reversed tai

From The Art of Prolog, Sterling & Shapiro pp. 12-13, 203.

Is the basis for computing LIPS (Logical Inferences Per
Second), t.he performance measure for logic compl.Jters a.nd @ In is initialized to the empty list.

programming languages. Reversing a 30 element list (using © At each step we take one element (X) from the original list (Z)
naive reverse) requires 496 reductions. A reduction is the and add it to the beginning of the In list.

basic computational step in logic programming. © When the original list (Z) is empty we instantiate the Out list
to the result (the In list), and return this result up through the
levels of recursion.

@ reverse?2 is linear in the number of elements in the list.
@ reverse?2 works like this:

@ Use an accumulator pair In and Out

Prolog Lists — Reverse. . .

Reverse — Naive Reverse

reversel([], [1).
reversel ([X|Q], Z) :-

reversel(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [1, V).

reverse2([X|Z], In, Out) :-
reverse(Z, [X|In], Out).
reverse2([], Y, Y).

Reverse — Smart Reverse

reverse2([a, b, c,d], D D=[d, c, b, a]
¥ 1 i) 1

N

reverse2([a, b,c,d],[],D

oy
reverse2([b,c,d],[a], D
Co

v
reverse2([c,d],[b,a], D
CoA

y
reverse2([d],[c,b,a], D
' A

V///’/\§ |
reverse2([],[d,c,b,a],D

’
!
!

revi([a,b,c,d],[d, c,b,a])

/.\
revi([b,c,d],[d,c,b]) app([d,c,b],[a],[d, c,b,a])
°

revi([c,d],[d,c]) app([d,c],[b],[d c, b]) app([c,b],[a],[c,b,a])

T AN AN

revi([d],[d]) app([d].[c].[d,c]) app([c],[b],[c,b]) app([b].[a].[b,a])

(] \ \ \
A app([1.[cl.[¢]) app([],[b],[b]) app([].[al.[a])

revi([],[1)app([],[d],[d])

Delete

Prolog Lists — Delete. . . Prolog Lists — Delete. . .

del ete fromthis to yield
this one |ist this |ist ?7- delete_one(x, [a, x, b, x], D).
\\ é//// D = [a, b, x]
del et e(x L1 L2) _ ?- delete_all(x, [a, x, b, x], D).
’ ’ D = [a, b]
delete_.one @ Remove the first occurrence. ?- delete all(x, [a, x, b, [c, x], x], D).
delete_all @ Remove all occurrences. D= [a, b, [c, x]]

?- delete_struct(x, [a, x, [c, x], v(x)], D).

- ° i
delete_struct Remove all occurrences from all levels of a list D=1[a, b, [c], v(x)]

of lists.

Prolog Lists — Delete. . . Prolog Lists — Delete. . .

delete_all
delete_one © If the head of the list is X then remove it, and
@ If X is the first element in the list then return remove X from the tail of the list.
the tail of the list. @ If X is not the head of the list then remove X
@ Otherwise, look in the tail of the list for the first from Fhe ta.il of the list, and add the head to the
occurrence of X. resulting tail.

© When we're trying to remove X from the empty
list, just return the empty list.

Prolog Lists — Delete. . . Prolog Lists — Delete. . .

delete_struct

@ Why do we test for the recursive boundary case © The first rule is the same as the first rule in
(delete_all (X, [],[1)) last? Well, it only happens once so delete_all.
we should perform the test as few times as possible. @ The second rule is also similar, only that we
@ The reason that it works is that when the original list (the descend into the head of the list (in case it
second argument) is [1, the first two rules of delete_all should be a list), as well as the tail.
won't trigger. Why? Because, [] does not match [H|T], © The third rule is the catch-all for lists.
that's why! Q@ The last rule is the catch-all for non-lists. It

states that all objects which are not lists (atoms,
integers, structures) should remain unchanged.

Prolog Lists — Delete. . . Prolog Lists — Delete. . .

delete_one(X, [X12],Z). (1) delete_struct(X,[X|Z],Y) :-
delete_one(X,[VIZ],[VIY]) :- delete_struct(X, Z, Y).
X \==1,
delete_one(X,Z,Y). (2) delete_struct(X,[VIZ],[QlY]):-
X\==1,
delete_all (X, [X|Z],Y) :- delete_all(X,Z,Y). delete_struct(X, V, Q),
delete_all (X, [VIZ],[VIY]) :- delete_struct(X, Z, Y).
X\==1V,
delete_all(X,Z,Y). (3) delete_struct(X, [1, [1).

delete_all (X, [1,[1). (4) delete_struct(X, Y, Y).

Prolog Lists — Delete. . .

Y = [[[]]]
d_s(x, [x, [x, [X]1], ¥)

\

(1) "
d_s(x, [[x, [x]I1], [QAY])
7 -

d_s(x, [x [d], O d_s(x, 11, V)

y '
(v 1 (3)‘ ‘
d_s(x, [[x1], [AV]) ds(x.11.1D
° /// <
d_sOGIXT Q- ___ (27
i = d_s(x, [1, ¥
(1) A
; ‘(3);
d_s(x, 11, V)
A ds(x, [1, 1)
(3)
d_s(x,[1.11)

Sorting — Naive Sort

permutation(X, [Z|V]) :-
delete_one(Z,X,Y),
permutation(Y,V).

permutation([],[1).

ordered ([X]).
ordered([X,Y[Z]) :-
X =<Y,
ordered ([Y|Z]).

naive_sort(X, Y) :-
permutation(X, Y),
ordered(Y).

Application: Sorting

Sorting — Naive Sort. . .

@ This is an application of a Prolog cliche known as
generate-and-test.

naive_sort

© The permutation part of naive sort
generates one possible permutation of the input

@ The ordered predicate checks to see if this
permutation is actually sorted.

© |If the list still isn't sorted, Prolog backtracks to
the permutation goal to generate an new
permutation, which is then checked by ordered,
and so on.

Sorting — Naive Sort. . . Sorting — Naive Sort. . .

delete one Removes the first occurrence of X (its first
argument) from V (its second argument).

_ @ Notice that when delete_one is called, its first
@ Delete some element Z from the list argument (the element to be deleted), is an
@ Permute the remaining elements ; . . .
© Add Z to the beginning of the list unmstar'mated variable. So, rather than deleting
a specific element, it will produce the elements
from the input list (+ the remaining list of
elements), one by one:

permutation
@ If the list is not empty we:

When we backtrack (ask permutation to
generate a new permutation of the input list),
delete_one will delete a different element from

the list, and we will get a new permutation. 7- delete_one(X,[1,2,3,4],Y).
@ The permutation of an empty list is the empty X =1, Y= [2,3,4] ;
list. X=2,Y=1[1,3,4] ;
. - . X=3,Y=1[1,2,4] ;
@ Notice that, for efficiency reasons, the boundary case is put X=4,Y=1[1,2,3] :
after the general case. no .

Sorting — Naive Sort. . . Sorting — Naive Sort. . .

The proof tree in the next slide illustrates Third instance: Again, we backtrack all the way back up the tree
permutation([1,2,3],V). The dashed boxes give variable values and select X=3 and Y=[1,2]. We generate [3,1,2],
for each backtracking instance: [3,2,1].

First instance: delete_one will select X=1 and Y=[2,3]. Y will

) ?- permutation([1,2,3],V).
then be permuted into Y’=[2,3] and then (after

. vV =1[1,2,3] ;
having backtracked one step) Y’=[3,2]. In other V= [1.3.2] :
words, we generate [1,2,3], [1,3,2]. vV = [2:1:3] :

Second instance: We backtrack all the way back up the tree and vV = [2,3,1] ;
select X=2 and Y=[1,3]. Y will then be permuted V= [3,1,2] ;
into Y’=[1,3] and then Y’=[3,2]. In other words, vV = [3,2,1] ;

we generate [2,1,3], [2,3,1]. no.

Permutations

perm([1,2,3],[XIV])y-—=>1[1,2,3],[1,3,2],[21,3],[23,1],...

o e~ _v=[2,3],13,2],[1,2],[2,1], ...

del_one(X,[l,Z,S],Y) pern’(Y,[X’lV’A‘)“§‘\ \/:[3],[2]’[3]’[1]’

e :
(Y=(2.311 del_one(X,Y,Y) pern(Y . [X 'V '])
V. x =2 X =3 | A N
! | Y =[3 : Ly =[2 : \\
:7Yf[7]:,73J\ ::::i[::]:f ::::i[::]:f del _one(X ' ,Y ,Y ")pern([],V ")
coooees ix=l o x=3 R |
XSy =[3] v 1) , X7=8 1
:Y:[l, 2]\ ‘:::i:::i ‘:::i:::i : Y”:[] J\ . \/”:[]
****** X =l X =2 Tt

LY =[2] 0y =[1]

Application: Mutant Animals

Sorting Strings

@ Prolog strings are lists of ASCII codes.
@ "Maggie" = [77,97,103,103,105,101]

aless(X,Y) :-
name (X,X1), name(Y,Y1),
alessx(X1,Y1).

alessx([1,[_1_1).
alessx([XI1],[Y]]) :(- X <Y.
alessx([AIX],[AlY]) :- alessx(X,Y).

Mutant Animals

@ From Prolog by Example, Coelho & Cotta.
@ We're given a set of words (French animals, in our case).

@ Find pairs of words where the ending of the first one is the
same as the beginning of the second.

@ Combine the words, so as to form new “mutations”.

Mutant Animals. . . Mutant Animals. . .

mutate(M) :-
animal(Y), animal(Z), Y \== Z,

@ Find two words, Y and Z. name (Y,Ny), name(Z,Nz),

@ Split the words into lists of characters. name(atom, list) append (Y1,Y2,Ny), Y1 \==[1,
does this. append (Y2, Z2, Nz), Y2 \== [],
© Split Y into two sublists, Y1 and Y2. append(Y1,Nz,X), name(M,X).
© See if Z can be split into two sublists, such that the prefix is
the same as the suffix of Y (Y2). animal(alligator). /* crocodilex/
@ I all went well, combine the prefix of Y (Y1) with the suffix of animal (tortue). /* turtle */
Z (Z2), to create the mutant list X. an}mal(carlbou). /* caribou */
)]) animal (ours) . /* bear x/
@ Use name to combine the string of characters into a new atom. animal (cheval). /% horse %/
animal (vache) . /* cow x/
animal(lapin). /* rabbit */

Mutant Animals. . .

>~ mutate(D). Summary

X = alligatortue ; /* alligator+ tortue */
X = caribours ; /* caribou + ours */

X = chevalligator ; /* cheval + alligatorx/
X = chevalapin ; /* cheval + lapin */

X = vacheval /* vache + cheval */

Prolog So Far. ..

Lists are nested structures

e ©

Each list node is an object

9 with functor . (dot).
@ whose first argument is the head of the list
@ whose second argument is the tail of the list

(]

Lists can be split into head and tail using [H|T].

(]

Prolog strings are lists of ASCII codes.

(]

name (X,L) splits the atom X into the string L (or vice versa).

