CSc 372

Comparative Programming Languages

29 : Ruby — Blocks

Department of Computer Science
University of Arizona

Copyright © 2011 Christian Collberg

Christian Collberg

[terators

@ Ruby’s iterators are an easier way to do this.

@ The Array class implements a method find that iterates
through the array.

def isDuck?(name)
$flock.find do |x|
X == name
end
end

puts isDuck?("dewey")
puts isDuck?("donald")

_

@ Let's write a simple for loop to search through an array
looking for a particular value:

$flock = ["huey","dewey","louie"]

def isDuck?(name)
for i in 0...$flock.length
if $flock[i] == name then
return true
end
end
return false
end

puts isDuck?("dewey"), isDuck?("donald")

@ A block is enclosed within {} or do...end. Arguments to the
block (there can be more than one) are given within | ...].

@ A block is passed to a method by giving it after the list of
“normal” parameters.

@ The method invokes the block by using yield.

@ yield can take an argument which the method passed back
to the block.

collberg@gmail.com

Factorial

def triplets() @ Here's the factorial function, as an iterator.

yield "huey"

yield "dewey" defffﬁcin)
yield "louie" = L
for i in 1..n
end
f x=1i
triplets() {ld| puts 4} yield £
end
triplets() do |d| end
puts d , . .
end ac(5) {Ifl| puts f}

Passing arguments Nesting iterators

@ yield can pass more than one value to the block.

defffiCEH) @ lterators can be nested.
for i in 1..n fac(3) do |i,x|
f‘*= 1' fac(3) do |j,yl
yield i,f puts "#{i}! * #{j}! = #{xxy}"
end end
end end

fac(5) do |i,x|
puts "#{i}! = #{x}"
end

Scope

@ A local variable which is active when the block is started up,
can be accessed (and modified) within the block.

def sumfac(n)

y=0
fac(n) do |i,xl|
y=y *tx
end
return y
end

puts sumfac(5)

Array#collect

Implementing Array#find

@ We can implement our own find method:

def find(arr)
for i in O..arr.length
if yield arr[i] then return true end
end
return false
end

puts find($flock) {|x| x=="dewey"}
puts find($flock) {lx| x=="donald"}

Array#inject

@ collect applies the block to every element of an array,
creating a new array. This is similar to Haskell's map.

$flock = ["huey","dewey","louie"]
$flock.each {Ix| puts x}

puts $flock.collect {|x| x.length}
puts $flock.collect do |xl|

"junior woodchuck, General " + x
end

inject (init) is similar to Haskell's foldl.

inject () without an argument is like Haskell's fold11, i.e.
it uses the first element of the array as the starting value.

x = $flock.inject("") do |elmt,totall
total = elmt + " " + total

end

puts x

x = $flock.inject() do |elmt,totall
total = elmt + " " + total

end

puts x

Exercise — MyHash

@ Let's write our own version of Ruby’'s Hash class, called
MyHash.

@ The hash table should be implemented as an array of buckets
[0..size-1], where each bucket / is an array of [key,value]
pairs and such as

i = key.hash mod size

@ First, declare the class and add a constructor.

@ The constructor should take one argument, the size (number
of buckets). It should create the buckets (an array of nil
values) and set an instance variable @size to the number of
buckets.

@ HINT: Array.new(size=...,obj=...) creates an array of
size size, with each value being obj.

Exercise — MyHash — get

Exercise — MyHash — put

@ Now implement the put (key,value) method.
@ The algorithms is as follows:
© Compute the bucket number for the key, i.e. key.hash() mod
the size of the bucket array.
@ Check of the bucket is empty (nil). If so, set it to be an empty
list.
© Look through the table to see if there's already an element in
the bucket with the right key. If so, change the element to the
new value. Otherwise, add the [key,value] pair to the end of
the bucket.

@ HINT: array.map! {litem| block } invokes the block
once for each element of self, replacing the element with the
value returned by block.

Exercise — MyHash. . .

@ Now implement the get (key) method.
@ The algorithms is as follows:
@ Compute the bucket number for the key.
@ Check of the bucket is empty (nil). If it is, return nil.
© Look through the table to see if there's an element in the
bucket with the right key. If so, return the value. Otherwise,
return nil.

This code

h = MyHash.new(10)
h.put("hey","there")
h.put("yo","dude")
puts h.get("hey")
puts h.get("yo")
h.put ("hey", "baby")
puts h.get("yo")
puts h.get("hey")

should generate this output:

there
dude
dude
baby

Exercise — MyHash — each Exercise — MyHash — Example. ..

@ Now implement the each method which yields each element

at a time.

@ Use each to implement keys () and values() methods that puts h.to_s()
yields each element at a time.

@ Extend keys() such that it can yield each element at a time should print
(if you pass it a block) or returns an array of keys if you don't. hey => baby

@ HINT: The method block_given? returns true if you've yo => dude

passed a block to the method.

@ Add a method to_s() that return the key-value pairs of the
hashtable as a string.

Exercise — MyHash — Example. .. Exercise — MyHash — Example. ..

h.keys() {lx| puts x}

puts "M—mmmmm e " @ Extend the class so that in addition to using put and get you
s = h.keys() can also use [|= and [|]. Example:
puts s h["banana"] = "fruit"
puts h["banana"]
should print should print
hey fruit
yo @ HINT: alias :mnewmethod :oldmethod makes a new
1_1;;7 “““““““““““““““““““ method newmethod that simply calls oldmethod.

Exam Problem | — 372 Fall 2008 Exam Problem | — 372 Fall 2008

Let's implement methods map, filter, and foldr, corresponding
to their Haskell namesakes, but this time in Ruby! Here is the class
definition:

class Array

def Array.map(a) Each method is passed an array a as input and returns a new array
as output. In Haskell these higher-order functions would also be

end passed a function as argument, but here in Ruby they're instead
passed a block. The foldr method also has an argument z, the

def Array.filter(a) starting value.

end

def Array.foldr(a,z)

end
end

Exam Problem I(a) — 372 Fall 2008 Exam Problem I(b) — 372 Fall 2008

Write the Array.map method. This example Write the Array.filter method. This example

a = Array.map([1,2,3]) do |x]|
x+1
end
puts a

a = Array.filter([1,2,3,4,5]) do |x|
X h 2 ==
end
puts a

should print out should print out

2
3
4

2
4

Exam Problem I(c) — 372 Fall 2008 Readings

Write the Array.foldr method. These examples
puts Array.foldr([1,2,3,4,5],0) do Ix,zl

x+z
end
ts Array.foldr([1,2,3,4,5],0) do Ix,z . .
puts v (f 1.0) | | @ Read Chapter 4, page 49-55, in Programming Ruby — The
X-Zz . .
end Pragmatic Programmers Guide, by Dave Thomas.
puts Array. foldr([naaau , "bbb" , "CCC"] , n u) do IX,ZI @ Here's the documentation for the Array class:
X+Z http://www.ruby-doc.org/core/classes/Array.html
end

puts a
should print out

15
3
aaabbbccc

JEH

Kao Ya

http://www.ruby-doc.org/core/classes/Array.html

