
CSc 372

Comparative Programming Languages

29 : Ruby — Blocks

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

November 1, 2011

Blocks

Let’s write a simple for loop to search through an array
looking for a particular value:

$flock = ["huey","dewey","louie"]

def isDuck?(name)

for i in 0...$flock.length

if $flock[i] == name then

return true

end

end

return false

end

puts isDuck?("dewey"), isDuck?("donald")

Iterators

Ruby’s iterators are an easier way to do this.

The Array class implements a method find that iterates
through the array.

def isDuck?(name)

$flock.find do |x|

x == name

end

end

puts isDuck?("dewey")

puts isDuck?("donald")

Yield

A block is enclosed within {} or do...end. Arguments to the
block (there can be more than one) are given within |...|.

A block is passed to a method by giving it after the list of
“normal” parameters.

The method invokes the block by using yield.

yield can take an argument which the method passed back
to the block.

collberg@gmail.com

Yield. . .

def triplets()

yield "huey"

yield "dewey"

yield "louie"

end

triplets() {|d| puts d}

triplets() do |d|

puts d

end

Factorial

Here’s the factorial function, as an iterator.

def fac(n)

f = 1

for i in 1..n

f *= i

yield f

end

end

fac(5) {|f| puts f}

Passing arguments

yield can pass more than one value to the block.

def fac(n)

f = 1

for i in 1..n

f *= i

yield i,f

end

end

fac(5) do |i,x|

puts "#{i}! = #{x}"

end

Nesting iterators

Iterators can be nested.

fac(3) do |i,x|

fac(3) do |j,y|

puts "#{i}! * #{j}! = #{x*y}"

end

end

Scope

A local variable which is active when the block is started up,
can be accessed (and modified) within the block.

def sumfac(n)

y = 0

fac(n) do |i,x|

y = y + x

end

return y

end

puts sumfac(5)

Implementing Array#find

We can implement our own find method:

def find(arr)

for i in 0..arr.length

if yield arr[i] then return true end

end

return false

end

puts find($flock) {|x| x=="dewey"}

puts find($flock) {|x| x=="donald"}

Array#collect

collect applies the block to every element of an array,
creating a new array. This is similar to Haskell’s map.

$flock = ["huey","dewey","louie"]

$flock.each {|x| puts x}

puts $flock.collect {|x| x.length}

puts $flock.collect do |x|

"junior woodchuck, General " + x

end

Array#inject

inject(init) is similar to Haskell’s foldl.

inject() without an argument is like Haskell’s foldl1, i.e.
it uses the first element of the array as the starting value.

x = $flock.inject("") do |elmt,total|

total = elmt + " " + total

end

puts x

x = $flock.inject() do |elmt,total|

total = elmt + " " + total

end

puts x

Exercise — MyHash

Let’s write our own version of Ruby’s Hash class, called
MyHash.

The hash table should be implemented as an array of buckets
[0..size-1], where each bucket i is an array of [key,value]
pairs and such as

i = key.hash mod size

First, declare the class and add a constructor.

The constructor should take one argument, the size (number
of buckets). It should create the buckets (an array of nil
values) and set an instance variable @size to the number of
buckets.

HINT: Array.new(size=...,obj=...) creates an array of
size size, with each value being obj.

Exercise — MyHash — put

Now implement the put(key,value) method.

The algorithms is as follows:
1 Compute the bucket number for the key, i.e. key.hash() mod

the size of the bucket array.
2 Check of the bucket is empty (nil). If so, set it to be an empty

list.
3 Look through the table to see if there’s already an element in

the bucket with the right key. If so, change the element to the
new value. Otherwise, add the [key,value] pair to the end of
the bucket.

HINT: array.map! {|item| block } invokes the block
once for each element of self, replacing the element with the
value returned by block.

Exercise — MyHash — get

Now implement the get(key) method.

The algorithms is as follows:
1 Compute the bucket number for the key.
2 Check of the bucket is empty (nil). If it is, return nil.
3 Look through the table to see if there’s an element in the

bucket with the right key. If so, return the value. Otherwise,
return nil.

Exercise — MyHash. . .

This code

h = MyHash.new(10)

h.put("hey","there")

h.put("yo","dude")

puts h.get("hey")

puts h.get("yo")

h.put("hey","baby")

puts h.get("yo")

puts h.get("hey")

should generate this output:

there

dude

dude

baby

Exercise — MyHash — each

Now implement the each method which yields each element
at a time.

Use each to implement keys() and values() methods that
yields each element at a time.

Extend keys() such that it can yield each element at a time
(if you pass it a block) or returns an array of keys if you don’t.

HINT: The method block given? returns true if you’ve
passed a block to the method.

Add a method to s() that return the key-value pairs of the
hashtable as a string.

Exercise — MyHash — Example. . .

puts h.to_s()

should print

hey => baby

yo => dude

Exercise — MyHash — Example. . .

h.keys() {|x| puts x}

puts "-------------------------------------"

s = h.keys()

puts s

should print

hey

yo

hey

yo

Exercise — MyHash — Example. . .

Extend the class so that in addition to using put and get you
can also use []= and []. Example:

h["banana"] = "fruit"

puts h["banana"]

should print

fruit

HINT: alias :newmethod :oldmethod makes a new
method newmethod that simply calls oldmethod.

Exam Problem I — 372 Fall 2008

Let’s implement methods map, filter, and foldr, corresponding
to their Haskell namesakes, but this time in Ruby! Here is the class
definition:

class Array

def Array.map(a)

...

end

def Array.filter(a)

...

end

def Array.foldr(a,z)

...

end

end

Exam Problem I — 372 Fall 2008

Each method is passed an array a as input and returns a new array
as output. In Haskell these higher-order functions would also be
passed a function as argument, but here in Ruby they’re instead
passed a block. The foldr method also has an argument z, the
starting value.

Exam Problem I(a) — 372 Fall 2008

Write the Array.map method. This example

a = Array.map([1,2,3]) do |x|

x+1

end

puts a

should print out

2

3

4

Exam Problem I(b) — 372 Fall 2008

Write the Array.filter method. This example

a = Array.filter([1,2,3,4,5]) do |x|

x % 2 == 0

end

puts a

should print out

2

4

Exam Problem I(c) — 372 Fall 2008

Write the Array.foldr method. These examples

puts Array.foldr([1,2,3,4,5],0) do |x,z|

x+z

end

puts Array.foldr([1,2,3,4,5],0) do |x,z|

x-z

end

puts Array.foldr(["aaa","bbb","ccc"],"") do |x,z|

x+z

end

puts a

should print out

15

3

aaabbbccc

Readings

Read Chapter 4, page 49–55, in Programming Ruby — The

Pragmatic Programmers Guide, by Dave Thomas.

Here’s the documentation for the Array class:
http://www.ruby-doc.org/core/classes/Array.html

Yum!

http://www.ruby-doc.org/core/classes/Array.html

