What is Haskell?

CSc 372

@ Haskell is a functional programming language.

Comparative Programming Languages @ We study Haskell because, compared to other functional
languages
@ Haskell is statically typed (the signature of all functions and
the types of all variables are known prior to execution);
@ Haskell uses lazy rather than eager evaluation (expressions are
Department of Computer Science only evaluated when needed):

. . . © Haskell uses type inference to assign types to expressions,
UmverSIty of Arizona freeing the programmer from having to give explicit types;

© Haskell is pure (it has no side-effects).

3 : Haskell — Introduction

Copyright © 2011 Christian Collberg

Christian Collberg

What is Haskell?. . . What is Haskell?. . .

Haskell impl i Iso | ive which h > hugs
@ Haske ||.11p ement.atlcl)ns are also interactive whic mea.ns that Prelude> :load /usr/lib64/hugs/demos/Eliza.hs
the user interface is like a calculator; you enter expressions,

the Haskell interpreter checks them, evaluates them, and

Eliza> eliza

prints the result. This is called the “read-eval-print” loop: Hi! I’m Eliza. I am your personal therapy computer.
L‘ Read [Eval | print M Please tell me your problem.
> hugs > hello
Prelude> (2%5)+3 How do you...please state your problem.
13

> i’m bored!
Did you come to me because you are bored?

collberg@gmail.com

What is Haskell?. .. commaint — A Haskell Program

eliza = interact (writeStr hi $ session initial [])
where hi = "\n\
\Hi! I’m Eliza. I am your personal
\Please tell me your problem.\n\

An\ @ Real functional programs are, naturally, a bit more complex.
They make heavy use of

@ higher-order functions, functions which take functions as

\\Il"
arguments.
) @ function composition, which is a way to combine simple
session rs prev functions into more powerful ones.
= readLine "> " (\1 -> © function libraries, collections of functions that have proven
let ws = words (trim 1) useful. The standard.prelude that you've seen that the
(response,rs’) = if prev==ws then Haskell interpreter loads on start-up, is one such collection.

repeated rs else answer rs ws
in writeStr (response ++ "\n\n") $
session rs’ ws)

commaint — A Haskell Program. .. commaint — A Haskell Program. ..

Sample interaction:

@ So what does a “real” functional Haskell program look like?

Let's have a quick look at one simple (?) function, commaint. ? commaint "1234567"
@ commaint works on strings, which are simply lists of 1,234,567
characters.

commaint in Haskell:

@ You are not supposed to understand this! Yet...
commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWhile (not.null)
map (take n).iterate (drop n)

From the commaint documentation:
[commaint] takes a single string argument containing a
sequence of digits, and outputs the same sequence with
commas inserted after every group of three digits, - - -

commaint — A Haskell Program. .. commaint — A Haskell Program. ..

"1234567"
,,7654121,, reverse commaint in Haskell:
i iterate (drop 3) 9 commaint = reverse . foldrl (\x y->x++", "++y)
['7654321","4321","1","™ ", ...] L group 3 . reverse
¢ map (take 3) u where group n = takeWhile (not.null)
p map (take n).iterate (drop n)
['765","432","1",",™,...]
takeWhile (not.null) 3 commaint in English:
['765", "432", "1'] “First reverse the input string. Take the resulting string
¢ foldrL (W y=>xH+""+-+y) and separate into .chunlfs of length 3. Then append the
chunks together, inserting a comma between chunks.
"765,432,1" Reverse the resulting string.”
y reverse
"1,234,567"

commaint — A Haskell Program. .. commaint — A Haskell Program. ..

commaint = reverse . foldrl (\x y->x++", "++y)
group 3 . reverse
where group n = takeWhile (not.null) .
map (take n).iterate (drop n)

commaint = reverse . foldrl (\x y->x++", "++y)
group 3 . reverse
where group n = takeWhile (not.null)
map (take n).iterate (drop n)

@ group n is a “local function.” It takes a string and an integer

o k i @ iterate (drop 3) s returns the infinite (!) list of strings
as arguments. It divides the string up in chunks of length n.

[s, drop 3 s, drop 3 (drop 3 s),
drop 3 (drop 3 (drop 3 s)), ---]

@ take n s returns the first n characters of s.

@ reverse reverses the order of the characters in a string.

@ drop n xs returns the string that remains when the first n
characters of xs are removed.

commaint — A Haskell Program. ..

commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWhile (not.null) .
map (take n).iterate (drop n)

@ map (take n) s takes a list of strings as input. It returns
another list of strings, where each string has been shortened
to n characters. (take n) is a function argument to map.

@ takeWhile (not.null) removes all empty strings from a list
of strings.

commaint — A Haskell Program. ..

commaint — A Haskell Program. ..

commaint = reverse . foldrl (\x y->x++", "++y)
group 3 . reverse
where group n = takeWhile (not.null)
map (take n).iterate (drop n)

o foldrl (\x y->x++","++y) s takes a list of strings s as
input. It appends the strings together, inserting a comma
inbetween each pair of strings.

hugs vs. ghci vs.

@ Since Haskell is an interactive language, we can always try out
(parts of) functions that we don't understand.

? reverse "1234567"
7654321
? take 3 "dasdasdasd"
das
7 map (take 3) ["1234","23423","45324",""]
["123", "234", "453", []]
? iterate (drop 3) "7654321"
["7654321", "4321", "1", [1, [1, --- {interrupt!}

@ There are several implementations of Haskell. They are mostly
the same, but differ in which libraries they support.

@ In these slides the examples use the hugs Haskell interpreter.

@ A better choice these days is the Haskell platform, which you
can dOWhload from here: http://hackage.haskell.org/platform.

@ The Haskell platform comes with the ghci Haskell interpreter.

http://hackage.haskell.org/platform

ghci modules

@ To get some of the examples in these slides to work you may
need to import some libraries that ghci needs but that hugs
loads automatically.

@ Here's a list of ghci libraries:
http://www.haskell.org/ghc/docs/latest/html/libraries.
@ In particular, you may need these libraries:

o Data.Char (for character operations such as toUpper)
9 Data.List (for list operations such as sort)

@ To load these libraries in your programs say

import Data.Char
import Data.List

@ To load these libraries interactively when running ghci, type
:m Data.Char Data.List

http://www.haskell.org/ghc/docs/latest/html/libraries

