University of Arizona, Department of Computer Science

CSc 372 — Assignment 7 — Due noon, Wed Nov 23 — 5%

Christian Collberg
November 10, 2011

1 Introduction
The purpose of this assignment is to get started writing Ruby programs.

1. We will be grading on correctness and style. Every procedure should be adequately formatted and
documented.

2. Note that the code we're writing in this assignment will be used in the next!

3. The answers to the problems in the first few sections should be put in the file ass.rb. The answers
for Sections 6 and 7 should be put in the file fb.rb.

4. The first few sections should be done individually. Sections 6 and 7 can be done in a team of two
students.

5. You canread about here-documents here: http://ruby-doc.org/docs/ProgrammingRuby/html/language.
html.

2 Ruby Strings

1. Write a method calcForm(left, op, right, result) which uses here-documents and string inter-
polation to generate HTML for an on-line calculator. The following code should be returned, with

<select name="op">

For example, calcForm(6, "mul", 7, 42) should return the string [56 points]

<input type="text" name="left" value="6">
<select name="op">

<option value="add">+</option>

<option value="mul" selected>*</option>
</select>

<input type="text" name="right" value="7">

42
and calcForm(99, "add", 1, 100) should return

<input type="text" name="left" value="99">
<select name="op">
<option value="add" selected>+</option>
<option value="mul">*</option>
</select>
<input type="text" name="right" value="1">

100

In other words, the word selected should appear after "add" or "mul" depending on the value of op,
the values of left and right should be filled in in value="...", and the result should appear on
the last line.

3 Regular expressions

The problems in this section should be solved using regular expressions.

1. A username consists of a letter followed by at a least one (but possibly more) letters and digits. A
password consists of four or more letters or digits. A gender specification consists of either the word
"Male" or the word "Female". Finish the following predicates: [5 points]

def okUsername (un)
if un =~ /YOUR CODE/ then true else false end
end

def okPassword(pw)
if pw =~ /YOUR CODE/ then true else false end
end

def okSex(sex)
if sex =~ /YOUR CODE/ then true else false end
end

For example, this code

print okUsername("lonelygirll5"), " ", okUsername("15lonelygirl"), "\n"

print okPassword("fool5"), " ", okPassword("foo"), " ", okPassword("#####"), "\n"

print okSex("Male"), " ", okSex("Female"), " ", okSex("male"), " ", okSex("blah"), "\n"

should produce this result:

true false
true false false
true true false false

2. The following method reads and returns lines from a file. Modify it so that it ignores (does not
return) any line consisting only of whitespace (blanks and tabs) and any line whose first character is
a #: [5 points]

def read_line (database)
File.open(database) do |filel|
file.each do |line]
yield line
end
end
end

For example, this code
read_line("testfile") do |linel
puts line
end
given this input file
line 1
line 2
line 3
#don’t print this line
line 4
should yield this output:
line 1
line 2
line 3
line 4
3. Modify this method so that it splits up a string in words and returns it as an array. A word is defined
as a sequence of characters surrounded by whitespace, or enclosed between double-quotes. You can
assume that there is an even number of double-quotes. [5 points]
def split_line (line)
a =[]
line.scan(/YOUR CODE HERE/) do |word|
a << YOUR CODE HERE
end
return a

end

For example, this code

a = split_line(’ aaa "bbb ccc" ddd "eee"’)
a.each do |wordl|

puts nmon + word + non
end

should produce this output:

’aaa’
bbb ccc’
’ddd’
‘eee’

. Modify this method

def load(filename)
username = name = password = sex = nil
friends = {}
read_line(filename) do |line]
args = line.scan(/["\s]+/)
case args[0]
YOUR CODE HERE
end
end
end

so that it can read a database file that looks like this:

HEHHAFHBHHHAFHBH SRR AHHH RS HH AR B FH R RS
USERNAME 1lonelygirli3
NAME Daisy
SEX Female
PASSWORD sailorboy
FRIENDS nopants/dated cheeseboy/random

END
and returns an array like this:

["lonelygirl13","Daisy","sailorboy","Female",
{"nopants"=>"dated","cheeseboy"=>"random"}]

[10 points]

You can assume that the input file is well-formed, so there’s no need to check that the data is OK.
read_line is as defined earlier, i.e. any line containing only whitespace should be ignored, leading
whitespace should be ignored, any line starting with a # should be ignored. The FRIENDS entry can

have arbitrarily many username/how_we _met-pairs.

Arrays and Hashes

. In a Facebook system every friend relationship is defined by a short word, one of "dated", "family",
"friend", "work", "random", "group". However, we want to present this information to the user

in a more readable way. Therefore, define a hashtable

[5 points]

FRIEND_OPTIONS = {YOUR CODE HERE}

such that each of the strings above are mapped to "dated", "in my family", "met through a
friend", "worked together", "met randomly", "in a group together" respectively.

2. Write a method square(a) which takes a list of integers as input and returns a new list with the
numbers squared. [5 points]

> b = square([1,2,3,4,5])
> puts b

1

4

9

16

25

3. Write a method square! (a) which takes a list of integers as input and squares the elements. The
method should return nil. The original array should be overwritten with the new one. [5 points]

>a=[1,2,3,4,5]
> square! (a)

> puts a

1

4

9

16

25

4. Write a method square? (a) which returns true if a is a list of square integer values (16,64,etc.), false
otherwise. [5 points]

> puts square?([1,4,9,16])
true

> puts square?([1,4,9,15])
false

Blocks and Iterators

1. Implement methods map1?, filter, and foldr, corresponding to their Haskell namesakes, but this
time in Ruby! Here is the class definition: [10 points]

class Array
def Array.mapl(a)

end
def Array.filter(a)

end

ISince there’s already a map function in the Array class, we name oursmap1.

def Array.foldr(a,z)

end
end

Each method is passed an array a as input and returns a new array as output. In Haskell these higher-
order functions would also be passed a function as argument, but here in Ruby they’re instead passed
a block. The foldr method also has an argument z, the starting value.

For this problem you (obviously!) cannot use any of the standard Ruby methods that
implement functions corresponding to mapl, filter, and foldr.

(a) Write the Array.mapl method. This example

a = Array.map1([1,2,3]) do |xl
x+1
end
puts a

should print out

2
3
4

(b) Write the Array.filter method. This example

a = Array.filter([1,2,3,4,5]) do |x|
x %h 2 ==
end
puts a

should print out

2
4

(c) Write the Array.foldr method. These examples

a = Array.foldr([1,2,3,4,5],0) do Ix,z|

X+z
end
puts a
a = Array.foldr([1,2,3,4,5],0) do Ix,z|
X~z
end
puts a
a = Array.foldr(["aaa","bbb","ccc"],"") do Ix,z|
X+z
end
puts a

should print out

15
3
aaabbbccc

2. Assume that we have a database describing who friends with whom in a Facebook-like system:[10 points]

$database = {
"bluehat"
"lonelygirl13"
"nopants"
"greenhat"
"redhat"
"cheeseboy"

}

["nopants","greenhat","redhat"],

["nopants","cheeseboy"],
["bluehat","lonelygirll3","greenhat","cheeseboy","redhat"],
["bluehat","nopants","redhat"],

["bluehat","nopants","greenhat"],
["lonelygirl13","nopants"]

Here, user bluehat has three friends, users "nopants", "greenhat", and "redhat"

Write a Breadth First Search routine that traverses this graph printing out each level on a separate

line:

def BFS(queue, visited)

YOUR CODE HERE

end

def levels(username)
visited = {username=>true}

queue = [username]

BFS(queue, visited)

end

For example, starting from bluehat, the call

levels("bluehat")
we should print

bluehat

nopants greenhat redhat
lonelygirll3 cheeseboy

3. Extend the code above to instead generate the users in breadth-first order: [5 points]

def BFS2(queue, visited)

. yield ...
end

def levels2(username)

visited = {username=>true}

queue = [username]

end

Given that, this code

levels2("bluehat") do

puts user
end

|user

should produce

bluehat

nopants

greenhat

redhat

lonelygirlil3

cheeseboy

4. Finally, extend the code from above so that levels3("bluehat") generates pairs of (username, level):[5 points]

def BFS3(queue, visited, level)
yield friend,level

end

def levels3(username)

end

This code

levels3("bluehat") do |user,levell
print(user," => ", ,level,"\n")

end

should therefore produce:

bluehat => 0
nopants => 1
greenhat => 1
redhat => 1
lonelygirll3 => 2
cheeseboy => 2

6 372book — The User class [10 points]

In the next assignment you will be writing a minimalistic Facebook-clone (we will call it 372book) using
Ruby and CGI scripting. To get started, you should write two classes User and Database.

The User encapsulates the data that is know about one 372book user, namely their unique username (as
defined above), their real name, their sex Male or Female, their password (as defined above), and their set
of friends. Friends are defined as a hashtable mapping the friend’s username to the way in which the two
friends met.

class User
attr_reader YOUR CODE HERE
attr_writer YOUR CODE HERE

def initialize(username,name,friends,sex,password)
YOUR CODE HERE

end
def to_out
YOUR CODE HERE
end
end

The initialize method creates a new User object. username, name, sex, password are all strings, whereas
friends is a hashtable mapping strings to strings.

The to_out method returns the information in a User object as a string. For example, this object

daisy = User.new("lonelygirl13", "Daisy Duck",
{"nopants"=>"dated", "cheeseboy"=>"random"},
"Female", "sailorboy")

should be formated like this:

USERNAME 1lonelygirli3

NAME "Daisy Duck"

SEX Female

PASSWORD sailorboy

FRIENDS nopants/dated cheeseboy/random
END

The order between the friends is not important.

7 372book — The Database class [10 points]

Finally, you should implement the Database class. In our 372book system this class encapsulates a hashtable
that maps user names to a corresponding object of the User class. Between executions the database resides
on a text file, but every time you need to operate on it (to look up a user, add a new user, or delete a user),
you have to load the file from the disk into memory. Every time you’ve changed something (adding a user,
for example), the database has to be written back to disk.

The load () and save () methods load a database from a text file and saves it back into the same file, in the
same format. For example, this database file

USERNAME bluehat

NAME "Dewey Duck"

SEX Male

PASSWORD wood

FRIENDS nopants/family greenhat/family redhat/family
END

USERNAME 1lonelygirlil3

NAME "Daisy Duck"

SEX Female

PASSWORD sailorboy

FRIENDS nopants/dated cheeseboy/random
END

should be loaded into a data structure that’s essentially this:

db = {
"lonelygirli13" => User.new("lonelygirll3", "Daisy Duck",
{"nopants"=>"dated", "cheeseboy"=>"random"},
"Female", "sailorboy")
"bluehat" => User.new("bluehat", "Dewey Duck",
{"nopants"=>"family", "greenhat"=>"family",
"redhat"=>"family"}, "Male", "wood")
}

Here is the class definition with the methods you should implement:

$FILE = "database.txt"
class Database

def initialize
def [] (name)
def []= (name,user)

def users()
. yield u ...
end

def exists_user?(name)

def read_line (database)
def split_line (line)
def load()
def save()

end

The users () method is an iterator that generates the user names of all the users in the database. The []
method returns the User object associated with a particular name. The []= method associates a User object
with a particular name.

10

Thus, you can build the database above like this:

d = Database.new
d["lonelygirl13"] = User.new("lonelygirl13", "Daisy Duck",
{"nopants"=>"dated", "cheeseboy"=>"random"},
"Female", "sailorboy")
d["bluehat"] = User.new("bluehat", "Dewey Duck",
{"nopants"=>"family", "greenhat"=>"family",
"redhat"=>"family"}, "Male", "wood")

And query it like this:

puts d["lonelygirl13"].to_out
d.users {|x| puts x}

Which should produce the following output:

USERNAME 1lonelygirlil3

NAME "Daisy Duck"

SEX Female

PASSWORD sailorboy

FRIENDS nopants/dated cheeseboy/random
END

bluehat

lonelygirlil3

8 Submission and Assessment

The deadline for this assignment is noon, Wed Nov 23. It is worth 5% of your final grade.

You should submit the assignment electronically using d21.arizona.edu

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of
your code with anyone. If you need help with the assignment see the instructor or the TA.

11

