CSc 372

Comparative Programming Languages

32 . Ruby — Types

Department of Computer Science
University of Arizona

Copyright © 2011 Christian Collberg

Christian Collberg

Compile-time type-checking. ..

Compile-time type-checking

@ Some call it static checking, type safety, strict type-checking,

strong typing,. ..
@ It does have some advantages:

© You catch certain errors at compile time which you now can be
sure won't occur at run-time: arithmetic between the wrong
types, wrong number of arguments to functions, etc.

@ Simple errors that appear during code refactoring are easily

caught and fixed.
© The more the compiler knows about your code, the better

optimized code it can produce.
@ Types serve as comments to the programmer, reminding
him/her of what types of arguments a method was designed to

take.

Run-time type-checking

@ But:
@ Even Java has many errors which cannot be caught until
run-time, such as ClassCastException and

ArrayBoundsException.
@ Sometimes you need more flexibility, and it can be hard to

work around a strict typechecker.

@ On the one hand, on the other hand:
@ Less static type-checking may make programs faster to write,
but it may also make them harder to maintain.
@ A program is written once, but read and re-written many times
— types can help someone unfamliar with the code to

understand it quicker.


collberg@gmail.com

Ruby Typing Ruby Typing

@ Here's a simple class that logs data by appending it to a file:

class Logger
def initialize()

@ The type of an object is defined by what it can do. @f = File.open("logfile", "w")

@ If an object walks like a duck, and talks like a duck, let's treat end

it like it's a duck!
. _ def 1
@ We call this Duck Typing. ° @fofimzzz:EZi

end
end

1 = Logger.new
1.log("Ducks ahoy!\n")

Ruby Typing. .. Ruby Typing. ..

o Or a string, which also knows the << message. @ Or an array, which also responds to the << message:

@ Notice that the only change we had to make was to the

_ class Logger
statement that creates the f-object.

def initialize()
ef = []

class Logger end

def initialize()
@f = "n

def log(message)
end

@f << message
end

def log(message) end

@f << message
end

1 = Logger.new
end

1.log("Ducks ahoy!\n")



Ruby Type “Checking” Ruby Type “Checking”. ..

@ If you absolutely want to check types, you should really check
whether an object responds to a particular message or not:

class Logger

def initialize() @ Of course, all we're checking here is that there's a method by

of = {} the name of <<, we know nothing about what arguments it
end takes, what it does to those arguments, etc, so this is pretty
def log(message) weak checking.

unless @f.respond_to?(:<<)
fail TypeError.new("log needs <<")
end
@f << message
end
end

Ducks vs. Dragons Ducks vs. Dragons

class Duck class Dragon
def quack() puts "Quack!" end def quack() puts "Impersonate a Duck!" end
def walk() puts "Do the duck walk!" end def walk() puts "Breath fire!" end
end end
def playInMyPond! (someSort0fDuck) def playInMyPond! (someSort0fDuck)
someSort0fDuck.quack() someSort0fDuck.quack()
someSort0fDuck.walk() someSort0fDuck.walk()
end end
donald = Duck.new() dragon = Dragon.new()

playInMyPond! (donald) playInMyPond! (dragon)



Cowboys vs. Squares — Ruby

Cowboys vs. Squares — Java

class Cowboy
def move() end
def draw() end
end

class Square
def move() end
def draw() end
end

johnWayne = Cowboy.new()
smallSquare = Square.new()
johnWayne = smallSquare

Readings

@ Read Chapter 23, page 365-377, in Programming Ruby —
The Pragmatic Programmers Guide, by Dave Thomas.

class Cowboy {
void move() {}
void draw() {}
}
class Square {
void move() {}
void draw() {}
}
class Java {
public static void main(String[] args) {
Cowboy johnWayne = new Cowboy();
Square smallSquare = new Square();
johnWayne = smallSquare;

Well-Travelled Ducks

19,000 go south S
andwash up in —

Australia, Indonesia rse for
. 2,000 miles and South America British beaches

From http://www.dailymail.co.uk/pages/live/articles/news/news.html?in_article_id=464768


http://www.dailymail.co.uk/pages/live/articles/news/news.html?in_article_id=464768

