
CSc 372 — Comparative Programming Languages

10 : Haskell — Curried Functions

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

September 6, 2011

1

Infix Functions

2 Declaring Infix Functions

• Sometimes it is more natural to use an infix notation for a function application, rather than the normal
prefix one:

– 5 + 6 (infix)

– (+) 5 6 (prefix)

• Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic.

• For each operator we need to specify its precedence and associativity. The higher precedence of an
operator, the stronger it binds (attracts) its arguments: hence:

3 + 5*4 ≡ 3 + (5*4)

3 + 5*4 6≡ (3 + 5) * 4

3 Declaring Infix Functions. . .

• The associativity of an operator describes how it binds when combined with operators of equal prece-
dence. So, is

5-3+9 ≡ (5-3)+9 = 11

OR

5-3+9 ≡ 5-(3+9) = -7

The answer is that + and - associate to the left, i.e. parentheses are inserted from the left.

• Some operators are right associative: 5^3^2 ≡ 5^(3^2)

1



• Some operators have free (or no) associativity. Combining operators with free associativity is an error:

5 == 4 < 3 ⇒ ERROR

4 Declaring Infix Functions. . .

• The syntax for declaring operators:

infixr prec oper -- right assoc.

infixl prec oper -- left assoc.

infix prec oper -- free assoc.

From the standard prelude:

infixl 7 *

infix 7 /, ‘div‘, ‘rem‘, ‘mod‘

infix 4 ==, /=, <, <=, >=, >

• An infix function can be used in a prefix function application, by including it in parenthesis. Example:

? (+) 5 ((*) 6 4)

29

5

Multi-Argument Functions

6 Multi-Argument Functions

• Haskell only supports one-argument functions.

• An n-argument function f(a1, · · · , an) is constructed in either of two ways:

1. By making the one input argument to f a tuple holding the n arguments.

2. By letting f “consume” one argument at a time. This is called currying.

Tuple Currying
add :: (Int,Int)->Int

add (a, b) = a + b

add :: Int->Int->Int

add a b = a + b

7 Currying

• Currying is the preferred way of constructing multi-argument functions.

• The main advantage of currying is that it allows us to define specialized versions of an existing function.

• A function is specialized by supplying values for one or more (but not all) of its arguments.

• Let’s look at Haskell’s plus operator (+). It has the type

(+) :: Int -> (Int -> Int).

• If we give two arguments to (+) it will return an Int:

(+) 5 3 ⇒ 8

2



8 Currying. . .

• If we just give one argument (5) to (+) it will instead return a function which “adds 5 to things”. The
type of this specialized version of (+) is Int -> Int.

• Internally, Haskell constructs an intermediate – specialized – function:

add5 :: Int -> Int

add5 a = 5 + a

• Hence, (+) 5 3 is evaluated in two steps. First (+) 5 is evaluated. It returns a function which adds

5 to its argument. We apply the second argument 3 to this new function, and the result 8 is returned.

9 Currying. . .

• To summarize, Haskell only supports one-argument functions. Multi-argument functions are con-
structed by successive application of arguments, one at a time.

• Currying is named after logician Haskell B. Curry (1900-1982) who popularized it. It was invented by
Schönfinkel in 1924. Schönfinkeling doesn’t sound too good...

• Note: Function application (f x) has higher precedence (10) than any other operator. Example:

f 5 + 1 ⇔ (f 5) + 1

f 5 6 ⇔ (f 5) 6

10 Currying Example

• Let’s see what happens when we evaluate f 3 4 5, where f is a 3-argument function that returns the
sum of its arguments.

f :: Int -> (Int -> (Int -> Int))

f x y z = x + y + z

f 3 4 5 ≡ ((f 3) 4) 5

11 Currying Example. . .

• (f 3) returns a function f’ y z (f’ is a specialization of f) that adds 3 to its next two arguments.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

f’ :: Int -> (Int -> Int)

f’ y z = 3 + y + z

12 Currying Example. . .

• (f’ 4) (≡ (f 3) 4) returns a function f’’z (f’’ is a specialization of f’) that adds (3+4) to its
argument.

3



f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

⇒ f’’ 5

f’’ :: Int -> Int

f’’ z = 3 + 4 + z

• Finally, we can apply f’’ to the last argument (5) and get the result:

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

⇒ f’’ 5 ⇒ 3+4+5 ⇒ 12

13 Currying Example

The Combinatorial Function:

• The combinatorial function
(

n

r

)

“n choose r”, computes the number of ways to pick r objects from n.

(

n

r

)

=
n!

r! ∗ (n − r)!

In Haskell:

comb :: Int -> Int -> Int

comb n r = fact n/(fact r*fact(n-r))

? comb 5 3

10

14 Currying Example. . .

comb :: Int -> Int -> Int

comb n r = fact n/(fact r*fact(n-r))

comb 5 3 ⇒ (comb 5) 3 ⇒
comb5 3 ⇒
120 / (fact 3 * (fact 5-3)) ⇒
120 / (6 * (fact 5-3)) ⇒
120 / (6 * fact 2) ⇒
120 / (6 * 2) ⇒
120 / 12 ⇒
10

comb5 r = 120 / (fact r * fact(5-r))

• comb5 is the result of partially applying comb to its first argument.

15 Associativity

• Function application is left-associative: f a b = (f a) b f a b 6= f (a b)

• The function space symbol ‘->’ is right-associative:

4



a -> b -> c = a -> (b -> c)

a -> b -> c 6= (a -> b) -> c

• f takes an Int as argument and returns a function of type Int -> Int. g takes a function of type Int

-> Int as argument and returns an Int:

f’ :: Int -> (Int -> Int)

m
f :: Int -> Int -> Int

6m
g :: (Int -> Int) -> Int

16 What’s the Type, Mr. Wolf?

• If the type of a function f is

t1 -> t2 -> · · · -> tn -> t

• and f is applied to arguments

e1::t1, e2::t2, · · · , ek::tk,

• and k ≤ n

• then the result type is given by cancelling the types t1 · · · tk:

6 t1 -> 6 t2 -> · · · -> 6 tk -> tk+1 -> · · · -> tn -> t

• Hence, f e1 e2 · · · ek returns an object of type

tk+1 -> · · · -> tn -> t.

• This is called the Rule of Cancellation.

17 flip

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

• The flip function takes a function f x y (f is the function and x and y its two arguments, and
reorders the arguments!

• Or, more correctly, flip returns a new function f y x.

• You can use this when you want to specialize a function by supplying an argument, but the function
takes its arguments in the “wrong order.”

5



18 flip. . .

• Consider the (!!) function, for example:

> :type (!!)

(!!) :: [a] -> Int -> a

> :type flip(!!)

flip (!!) :: Int -> [a] -> a

> (!!) [1..10] 2

3

> (flip (!!)) 2 [1..10]

3

• Now you can write a function fifth using (!!) which returns the fifth element of a list:

fifth :: [a] -> a

fifth = (flip (!!)) 5

19 Homework

• Define an operator $$ so that x $$ xs returns True if x is an element in xs, and False otherwise.

Example:

? 4 $$ [1,2,5,6,4,7]

True

? 4 $$ [1,2,3,5]

False

? 4 $$ []

False

20 Homework

• Define an function drop3 which takes a list as argument and returns a new list with the first three
elements removed.

• Use currying!

21 Homework

> :type elem

elem :: Eq a => a -> [a] -> Bool

> elem 3 [1..10]

• The elem function returns true if the first argument is a member of the second (a list).

• Write a function has3 xs which returns true if xs (a list) contains the number 3.

• Write a function isSmallPrime x which returns true if x is one of the numbers 2,3,5,7.

• Use currying!

6



> isSmallPrime 2

True

> has3 [1]

False

7


