1

[n |

CSc 372 — Comparative Programming Languages

15 : Haskell — List Comprehension

Christian Collberg
Department of Computer Science
University of Arizona
collberg@gmail.com

Copyright © 2011 Christian Collberg

September 14, 2011

List Comprehensions

Haskell has a notation called list comprehension (adapted from mathematics where it is used to con-
struct sets) that is very convenient to describe certain kinds of lists. Syntax:

[expr | qualifier, qualifier, ---]

In English, this reads:

“Generate a list where the elements are of the form expr, such that the elements fulfill the
conditions in the qualifiers.”

The expression can be any valid Haskell expression.

The qualifiers can have three different forms: Generators, Filters, and Local Definitions.

Generator Qualifiers

Generate a number of elements that can be used in the expression part of the list comprehension.
Syntax:

pattern <- list_expr

The pattern is often a simple variable. The 1list_expr is often an arithmetic sequence.

n<-[1..5]1 = [1,2,3,4,5]

[n*n | n<-[1..5]] = [1,4,9,16,25]

[(n,n*n) | n<_[1..3]] = [(1s1)s(2s4)s(3’9)]

3 Filter Qualifiers

e A filter is a boolean expression that removes elements that would otherwise have been included in the
list comprehension. We often use a generator to produce a sequence of elements, and a filter to remove
elements which are not needed.

[n*n | n<-[1..9],even n] = [4,16,36,64]

[(n,n*n) | n<-[1..3],n<n*n] = [(2,4),(3,9)]

4 Local Definitions

e We can define a local variable within the list comprehension. Example:

[n*n | let n = 2] = [4]

5 Qualifiers

e Earlier generators (those to the left) vary more slowly than later ones. Compare nested for-loops in
procedural languages, where earlier (outer) loop indexes vary more slowly than later (inner) ones.

Pascal:
for i :=1 to 9 do
for j :=1 to 3 do
print (i, j)
Haskell:

[(i,7) | i<-[1..9], j<-[1..31] =
[(1,1),01,2),0,3),
(2,1),(2,2),(2,3),

(9,1),(9,2),(9,3)]

6 Qualifiers...

e Qualifiers to the right may use values generated by qualifiers to the left. Compare Pascal where inner
loops may use index values generated by outer loops.

Pascal:
for i :=1 to 3 do
for j := 1 to 4 do
print (i, j)
Haskell:

[(i,3) | i<-[1..3], j<-[i..41] =
[(1,1),(1,2),(1,3),,4
(2,2),(2,3),(2,4),
(3,3),(3,4)]
[n*n | n<-[1..10], even n] = [4,16,36,64,100]

7 Example

e Define a function doublePos xs that doubles the positive elements in a list of integers.

In English:
“Generate a list of elements of the form 2*x, where the x:s are the positive elements from the
list xs.
In Haskell:
doublePos :: [Int] -> [Int]

doublePos xs = [2*x | x<-xs, x>0]

> doublePos [-1,-2,1,2,3]
[2,4,6]

e Note that xs is a list-valued expression.

8 Example
e Define a function spaces n which returns a string of n spaces.
Example:
> spaces 10
Haskell:

spaces :: Int -> String
spaces n = [> | i <= [1..n]]

e Note that the expression part of the comprehension is of type Char.

e Note that the generated values of i are never used.

9 Example
e Define a function factors n which returns a list of the integers that divide n. Omit the trivial factors
1 and n.
Examples:
factors 5 = []
factors 100 = [2,4,5,10,20,25,50]
In Haskell:
factors :: Int -> [Int]
factors n = [i | i<-[2..n-1], n ‘mod‘ i == 0]

10 Example

Pythagorean Triads:

e Generate a list of triples (x,y, z) such that 22 + y? = 22 and x,y,2 < n.

triads n = [(x,y,2) |
x<-[1..n], y<-[1..n], z<-[1..n],
X"2 + y°2 == z"2]

triads 5 = [(3,4,5),(4,3,5)]

11 Example...

e We can easily avoid generating duplicates:

triads’ n = [(x,y,2)]|
x<-[1..n], y<-[x..n], z<-[y..n],
X2 + y°2 == z72]

triads’ 11 = [(3,4,5), (6,8,10)]

12 Example — Making Change

e Write a function change that computes the optimal (smallest) set of coins to make up a certain amount.

Defining available (UK) coins:

type Coin = Int
coins :: [Coin]
coins = reverse (sort [1,2,5,10,20,50,100])

Example:

> change 23
[20,2,1]

> coins
[100,50,20,10,5,2,1]

> all_change 4
(f2,21,12,1,11,01,2,1],01,1,21,[1,1,1,1]]

13 Example — Making Change. ..

e all_change returns all the possible ways of combining coins to make a certain amount.
e all change returns shortest list first. Hence change becomes simple:
change amount = head (all_change amount)

e all_change returns all possible (decreasing sequences) of change for the given amount.

all _change :: Int -> [[Coin]]
all change 0 = [[]]
all_change amount = [c:cs |

c<-coins, amount>=c,
cs<-all_change (amount - c¢)]

14 Example — Making Change. ..

e all change works by recursion from within a list comprehension. To make change for an amount
amount we
1. Find the largest coin ¢ < amount: c<-coins,amount>=c.
2. Find how much we now have left to make change for: amount - c.
3. Compute all the ways to make change from the new amount: cs<-all_change (amount - c)
4

. Combine ¢ and cs: c:cs.

15 Example — Making Change. ..

e If there is more than one coin ¢ < amount, then c<-coins,amount>=c will produce all of them. Each
such coin will then be combined with all possible ways to make change from amount - c.

e coins returns the available coins in reverse order. Hence all_change will try larger coins first, and
return shorter lists first.

all change :: Int -> [[Coin]]

all change 0 = [[]]

all_change amount = [c:cs |
c<-coins, amount>=c,
cs<-all_change (amount - c)]

16 Summary
e A list comprehension [elq] generates a list where all the elements have the form e, and fulfill the

requirements of the qualifier q. ¢ can be a generator x<-1ist in which case z takes on the values in
list one at a time. Or, ¢ can be a a boolean expression that filters out unwanted values.

17 Homework
e Show the lists generated by the following Haskell list expressions.

1. [a*n | n<-[1..10],even n]

2. [7 | n<-[1..4]]

3. [(x,y) | x<-[1..31, y<-[4..7]1]

4. [(m,n) | m<-[1..3], n<-[1..m]]

5. [| i<-[1,-1,2,-2], i>0, j<-[1..i]l]

6. [a+b | (a,b)<-[(1,2),(3,4),(5,6)]]

18 Homework

e Use a list comprehension to define a function neglist xs that computes the number of negative
elements in a list xs.

Template:

neglist :: [Int] -> Int
neglist n = ---

Examples:

> neglist [1,2,3,4,5]
0

> neglist [1,-3,-4,3,4,-5]
3

19 Homework

o Use a list comprehension to define a function gensquares low high that generates a list of squares of
all the even numbers from a given lower limit low to an upper limit high.

Template:

gensquares :: Int -> Int -> [Int]
gensquares low high = [--- | ---]

Examples:

> gensquares 2 5
[4, 16]

> gensquares 3 10
[16, 36, 64, 100]

