CSc 372 — Comparative Programming Languages

20: Prolog — Matching

Christian Collberg
Department of Computer Science
University of Arizona
collberg@gmail.com

Copyright © 2011 Christian Collberg

October 3, 2011

1

Introduction

2 Unification & Matching

- So far, when we've gone through examples, I have said simply that when trying to satisfy a goal, Prolog searches for a *matching* rule or fact.
- What does this mean, to match?
- Prolog's matching operator or =. It tries to make its left and right hand sides the same, by assigning values to variables.
- Also, there's an implicit = between arguments when we try to match a query

?-f(x,y)

to a rule

 $f(A,B) :- \dots$

3 Matching Examples

____ The rule: _

```
deriv(U ^C, X, C * U ^L * DU) :-
    number(C), L is C - 1,
    deriv(U, X, DU).

?- deriv(x ^3, x, D).
    D = 1*3*x^2
```

_ The goal: _____

• x ^3 matches U ^C

$$-x = U, C = 3$$

- x matches X
- D matches C * U ^L * DU

4 Matching Examples...

5 Matching Algorithm

Can two terms A and F be "made identical," by assigning values to their variables?

Two terms A and F match if

- 1. they are identical atoms
- 2. one or both are uninstantiated variables
- 3. they are terms $A = f_A(a_1, \dots, a_n)$ and $F = f_F(f_1, \dots, f_m)$, and
 - (a) the arities are the same (n = m)
 - (b) the functors are the same $(f_A = f_F)$
 - (c) the arguments match $(a_i \equiv f_i)$

6 Matching – Examples

A	F	$A \equiv F$	variable subst.
a	a	yes	
\mathbf{a}	b	no	
$\sin(X)$	$\sin(a)$	yes	$\theta = \{X=a\}$
$\sin(a)$	$\sin(X)$	yes	$\theta = \{X=a\}$
$\cos(X)$	$\sin(a)$	no	
$\sin(X)$	$\sin(\cos(a))$	yes	$\theta = \{X = \cos(a)\}$

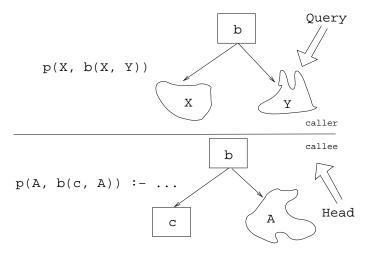
7 Matching – Examples...

A	F	$A \equiv F$	variable subst.
likes(c, X)	likes(a, X)	no	
likes(c, X)	likes(c, Y)	yes	$\theta = \{X = Y\}$
likes(X, X)	likes(c, Y)	yes	$\theta = \{X=c, X=Y\}$
likes(X, X)	$likes(c, _)$	yes	$\theta = \{X=c, X=47\}$
likes(c, a(X))	likes(V, Z)	yes	$\theta = \{V=c,Z=a(X)\}$
likes(X, a(X))	likes(c, Z)	yes	$\theta = \{X=c,Z=a(X)\}$

8 Matching Consequences

Consequences of Prolog Matching:

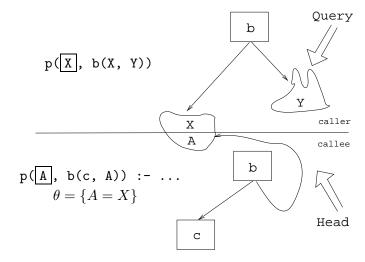
- An uninstantiated variable will match any object.
- An integer or atom will match only itself.
- When two uninstantiated variables match, they share:
 - When one is instantiated, so is the other (with the same value).
- Backtracking undoes all variable bindings.


9 Matching Algorithm

```
FUNC Unify (A, F: term): BOOL;
IF Is_Var(F) THEN Instantiate F to A
ELSIF Is_Var(A) THEN Instantiate A to F
ELSIF Arity(F)≠Arity(A) THEN RETURN FALSE
ELSIF Functor(F)≠Functor(A) THEN RETURN FALSE
ELSE
FOR each argument i DO
IF NOT Unify(A(i), F(i)) THEN
RETURN FALSE
RETURN TRUE;
```

10 Visualizing Matching

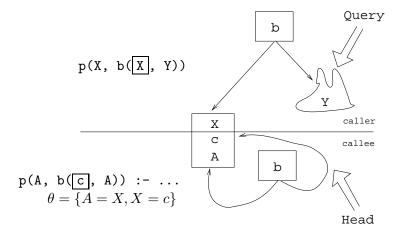
- From Prolog for Programmers, Kluzniak & Szpakowicz, page 18.
- Assume that during the course of a program we attempt to match the goal p(X, b(X, Y)) with a clause C, whose head is p(X, b(X, Y)).
- First we'll compare the arity and name of the functors. For both the goal and the clause they are 2 and p, respectively.


11 Visualizing Matching...

12 Visualizing Matching...

- The second step is to try to unify the first argument of the goal (X) with the first argument of the clause head (A).
- They are both variables, so that works OK.
- From now on A and X will be treated as identical (they are in the list of variable substitutions θ).

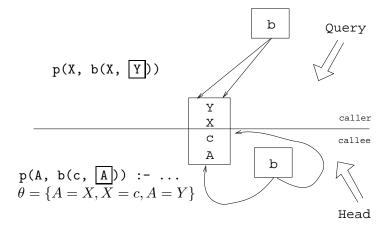
13 Visualizing Matching...



14 Visualizing Matching...

- Next we try to match the second argument of the goal (b(X, Y)) with the second argument of the clause head (b(c, A)).
- The arities and the functors are the same, so we go on to to try to match the arguments.

• The first argument in the goal is X, which is matched by the first argument in the clause head (c). I.e., X and c are now treated as identical.


15 Visualizing Matching...

16 Visualizing Matching...

• Finally, we match A and Y. Since A=X and X=c, this means that Y=c as well.

17 Visualizing Matching...

18

Summary

19 Readings and References

• Read Clocksin-Mellish, Sections 2.4, 2.6.3.

20 Prolog So Far...

- A term is either a
 - a constant (an atom or integer)
 - a variable
 - a structure
- \bullet Two terms match if
 - there exists a variable substitution θ which makes the terms identical.
- Once a variable becomes instantiated, it stays instantiated.
- \bullet Backtracking undoes variable instantiations.
- Prolog searches the database sequentially (from top to bottom) until a matching clause is found.