
CSc 372 — Comparative Programming Languages

22 : Prolog — Lists

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

October 25, 2011

1

Introduction

2 Prolog Lists

Haskell:

> 1 : 2 : 3 : []

[1,2,3]

Prolog:

?- L = .(a, .(b, .(c, [])))

L = [a, b, c]

a

b

c
[]

• Both Haskell and Prolog build up lists using cons-cells.

• In Haskell the cons-operator is :, in Prolog ..

3 Prolog Lists. . .

?- L = .(a, .(.(1, .(2, [])), .(b, .(c, []))))

L = [a, [1, 2], b, c]

1

2
b

c
[]

a

1

[]

• Unlike Haskell, Prolog lists can contain elements of arbitrary type.

4 Matching Lists – [Head | Tail]

A F A ≡ F variable subst.

[] [] yes
[] a no
[a] [] no
[[]] [] no
[a | [b, c]] L yes L=[a,b,c]

[a] [H | T] yes H=a, T=[]

5 Matching Lists – [Head | Tail]. . .

A F A ≡ F variable subst.

[a, b, c] [H | T] yes H=a,T=[b,c]

[a, [1, 2]] [H | T] yes H=a, T=[[1, 2]]

[[1, 2], a] [H | T] yes H=[1,2], T=[a]

[a, b, c] [X, Y, c] yes X=a, Y=c

[a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c

[a, b] [X, c] no

6

Member

7 Prolog Lists — Member

(1) member1(X, [Y|]) :- X = Y.

(2) member1(X, [|Y]) :- member1(X, Y).

(1) member2(X, [X|]).

(2) member2(X, [|Y]) :- member2(X, Y).

(1) member3(X,[Y|Z]) :- X = Y; member3(X,Z).

8 Prolog Lists — Member. . .

?- member(x, [a, b, c, x, f]).

2

yes

?- member(x, [a, b, c, f]).

no

?- member(x, [a, [x, y], f]).

no

?- member(Z, [a, [x, y], f]).

Z = a

Z = [x, y]

Z = f

9 Prolog Lists — Member. . .

(2)

fail

member1(x, [b|_])

x=b

succeed

member(x,[b,x,d])

(1) (2)

member1(x, [x|_])

x=x

(1)

member1(x,[_|[x,d]])

fail

member1(x, [a|_])

x=a

member1(x, [a, b, x, d])

member1(x, [_|[b,x,d]])

(1)

10

Append

11 Prolog Lists — Append

this one this one

makes

this one

append(L1, L2, L3).

followed by

(1) append([], L, L)

(2) append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

3

1. Appending L onto an empty list, makes L.

2. To append L2 onto L1 to make L3

(a) Let the first element of L1 be the first element of L3.

(b) Append L2 onto the rest of L1 to make the rest of L3.

12 Prolog Lists — Append. . .

app([b|[]],[1,2],[b|L3’’])

fail

fail

succeed

(1) (2)

app([a|[b]],[1,2],[a|L3])

app([b],[1,2],L3’)

app([],L,L)

app([],L,L)

app([a, b], [1, 2], L)

(1) (2)

app([],[1,2],[1,2])

(1)

L=[a,b,1,2]

13 Prolog Lists — Append. . .

app([],[1,2],[1,2])

app([a, b], [1, 2], L)

L=[a,b,1,2]

app([a|[b]],[1,2],[a|L3])

app([b]|[]],[1,2],[b|L3’])

?- L = [a | L3], L3 = [b | L3’], L3’ = [1,2].

L = [a,b,1,2], L3 = [b,1,2], L3’ = [1,2]

14 Prolog Lists — Using Append

1. append([a,b], [1,2], L)

• What’s the result of appending [1,2] onto [a,b]?

2. append([a,b],[1,2],[a,b,1,2])

4

• Is [a,b,1,2] the result of appending [1,2] onto [a,b]?

3. append([a,b], L, [a,b,1,2])

• What do we need to append onto [a,b] to make [a,b,1,2]?

• What’s the result of removing the prefix [a,b] from [a,b,1,2]?

15 Prolog Lists — Using Append. . .

4. append(L, [1,2], [a,b,1,2])

• What do we need to append [1,2] onto to make [a,b,1,2]?

• What’s the result of removing the suffix [1,2] from [a,b,1,2]?

5. append(L1, L2, [a,b,1,2])

• How can the list [a,b,1,2] be split into two lists L1 & L2?

16 Prolog Lists — Using Append. . .

app([a, b], L, [a, b, 1, 2])

fail

fail

succeed

app([],[1,2],[1,2])

app([],L2’’’,[1,2])

(1)

(1)

app([],L,L)

app([],L,L)

(1)

app([a|[b]],L2,[a|[b,1,2]])

app([b],L2’,[b,1,2])

(2)

(2)

app([b|[]],L2’’,[b|[1,2]])

17 Prolog Lists — Using Append. . .

?- append(L1, L2, [a,b,c]).

L1 = []

L2 = [a,b,c] ;

L1 = [a]

L2 = [b,c] ;

L1 = [a,b]

L2 = [c] ;

L1 = [a,b,c]

5

L2 = [] ;

no

18 Prolog Lists — Using Append. . .

(1)

[a,b,1,2])

succeed

app([],[b,1,2]
[b,1,2])

succeed

succeed

app([],[1,2],[1,2])

(1)

(1)

(2)

(2)

app(L1, L2, [a, b, 1, 2])

app([a|L1],L2,[a|[b,1,2]])

app(L1,L2’,[b,1,2])

app([b|L1’],L2’’,[b|[1,2]])

app(L1’,L2’’’,[1,2])

app([],[a,b,1,2]

19 Prolog Lists — Reusing Append

member Can we split the list Y into two lists such that X is at the head of the second list?

adjacent Can we split the list Z into two lists such that the two element X and Y are at the head of the
second list?

last Can we split the list Y into two lists such that the first list contains all the elements except the last
one, and X is the sole member of the second list?

20 Prolog Lists — Reusing Append. . .

member(X, Y) :- append(, [X|Z], Y).

?- member(x,[a,b,x,d]).

adjacent(X, Y, Z) :- append(, [X,Y|Q], Z).

?- adjacent(x,y,[a,b,x,y,d]).

last(X, Y) :- append(, [X], Y).

?- last(x, [a,b,x]).

21

Reversing a List

6

22 Prolog Lists — Reverse

• reverse1 is known as naive reverse.

• reverse1 is quadratic in the number of elements in the list.

• From The Art of Prolog, Sterling & Shapiro pp. 12-13, 203.

• Is the basis for computing LIPS (Logical Inferences Per Second), the performance measure for logic
computers and programming languages. Reversing a 30 element list (using naive reverse) requires 496
reductions. A reduction is the basic computational step in logic programming.

23 Prolog Lists — Reverse. . .

• reverse1 works like this:

1. Reverse the tail of the list.

2. Append the head of the list to the reversed tail.

• reverse2 is linear in the number of elements in the list.

• reverse2 works like this:

1. Use an accumulator pair In and Out

2. In is initialized to the empty list.

3. At each step we take one element (X) from the original list (Z) and add it to the beginning of the
In list.

4. When the original list (Z) is empty we instantiate the Out list to the result (the In list), and
return this result up through the levels of recursion.

24 Prolog Lists — Reverse. . .

reverse1([], []).

reverse1([X|Q], Z) :-

reverse1(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [], Y).

reverse2([X|Z], In, Out) :-

reverse(Z, [X|In], Out).

reverse2([], Y, Y).

7

25 Reverse – Naive Reverse

rev1([],[])

rev1([b,c,d],[d,c,b])

app([d],[c],[d,c])

rev1([c,d],[d,c]) app([d,c],[b],[d,c,b])

app([c],[b],[c,b])

app([d,c,b],[a],[d,c,b,a])

app([c,b],[a],[c,b,a])

app([b],[a],[b,a])

rev1([a,b,c,d],[d,c,b,a])

rev1([d],[d])

app([],[b],[b])app([],[c],[c]) app([],[a],[a])

app([],[d],[d])

26 Reverse – Smart Reverse

reverse2([a,b,c,d],[],D)

D=[d,c,b,a]reverse2([a,b,c,d],D)

reverse2([b,c,d],[a],D)

reverse2([c,d],[b,a],D)

reverse2([d],[c,b,a],D)

reverse2([],[d,c,b,a],D)

27

Delete

28 Prolog Lists — Delete. . .

delete

list

to yield

this listthis one

delete(X, L1, L2).

from this

delete one • Remove the first occurrence.

delete all • Remove all occurrences.

8

delete struct • Remove all occurrences from all levels of a list of lists.

29 Prolog Lists — Delete. . .

?- delete one(x, [a, x, b, x], D).

D = [a, b, x]

?- delete all(x, [a, x, b, x], D).

D = [a, b]

?- delete all(x, [a, x, b, [c, x], x], D).

D = [a, b, [c, x]]

?- delete struct(x, [a, x, [c, x], v(x)], D).

D = [a, b, [c], v(x)]

30 Prolog Lists — Delete. . .

delete one

1. If X is the first element in the list then return the tail of the list.

2. Otherwise, look in the tail of the list for the first occurrence of X.

31 Prolog Lists — Delete. . .

delete all

1. If the head of the list is X then remove it, and remove X from the tail of the list.

2. If X is not the head of the list then remove X from the tail of the list, and add the head to the
resulting tail.

3. When we’re trying to remove X from the empty list, just return the empty list.

32 Prolog Lists — Delete. . .

• Why do we test for the recursive boundary case (delete all(X,[],[])) last? Well, it only happens
once so we should perform the test as few times as possible.

• The reason that it works is that when the original list (the second argument) is [], the first two rules
of delete all won’t trigger. Why? Because, [] does not match [H|T], that’s why!

33 Prolog Lists — Delete. . .

delete struct

1. The first rule is the same as the first rule in delete all.

2. The second rule is also similar, only that we descend into the head of the list (in case it should
be a list), as well as the tail.

3. The third rule is the catch-all for lists.

4. The last rule is the catch-all for non-lists. It states that all objects which are not lists (atoms,
integers, structures) should remain unchanged.

9

34 Prolog Lists — Delete. . .

delete one(X,[X|Z],Z).

delete one(X,[V|Z],[V|Y]) :-

X \== V,

delete one(X,Z,Y).

delete all(X,[X|Z],Y) :- delete all(X,Z,Y).

delete all(X,[V|Z],[V|Y]) :-

X \== V,

delete all(X,Z,Y).

delete all(X,[],[]).

35 Prolog Lists — Delete. . .

(1) delete struct(X,[X|Z],Y) :-

delete struct(X, Z, Y).

(2) delete struct(X,[V|Z],[Q|Y]):-

X \== V,

delete struct(X, V, Q),

delete struct(X, Z, Y).

(3) delete struct(X, [], []).

(4) delete struct(X, Y, Y).

36 Prolog Lists — Delete. . .

Y = [[[]]]

d_s(x,[],Y)

d_s(x,[],[])

(3)

d_s(x, [], [])

(3)

d_s(x, [], Y)
(1)

(3)

d_s(x,[x],Q)

d_s(x,[],Y)

d_s(x,[],[])

(2)

(1)

(2)

d_s(x, [[x, [x]]], [Q|Y])

d_s(x, [x, [x]], Q)

d_s(x, [[x]], [Q|Y])

[[]]

(1)

d_s(x, [x, [x, [x]]], Y)

37

Application: Sorting

10

38 Sorting – Naive Sort

permutation(X,[Z|V]) :-

delete one(Z,X,Y),

permutation(Y,V).

permutation([],[]).

ordered([X]).

ordered([X,Y|Z]) :-

X =< Y,

ordered([Y|Z]).

naive sort(X, Y) :-

permutation(X, Y),

ordered(Y).

39 Sorting – Naive Sort. . .

• This is an application of a Prolog cliche known as generate-and-test.

naive sort

1. The permutation part of naive sort generates one possible permutation of the input

2. The ordered predicate checks to see if this permutation is actually sorted.

3. If the list still isn’t sorted, Prolog backtracks to the permutation goal to generate an new per-
mutation, which is then checked by ordered, and so on.

40 Sorting – Naive Sort. . .

permutation

1. If the list is not empty we:

(a) Delete some element Z from the list

(b) Permute the remaining elements

(c) Add Z to the beginning of the list

When we backtrack (ask permutation to generate a new permutation of the input list), delete one

will delete a different element from the list, and we will get a new permutation.

2. The permutation of an empty list is the empty list.

• Notice that, for efficiency reasons, the boundary case is put after the general case.

41 Sorting – Naive Sort. . .

delete one Removes the first occurrence of X (its first argument) from V (its second argument).

• Notice that when delete one is called, its first argument (the element to be deleted), is an
uninstantiated variable. So, rather than deleting a specific element, it will produce the elements
from the input list (+ the remaining list of elements), one by one:

11

?- delete one(X,[1,2,3,4],Y).

X = 1, Y = [2,3,4] ;

X = 2, Y = [1,3,4] ;

X = 3, Y = [1,2,4] ;

X = 4, Y = [1,2,3] ;

no.

42 Sorting – Naive Sort. . .

The proof tree in the next slide illustrates permutation([1,2,3],V). The dashed boxes give variable values
for each backtracking instance:

First instance: delete one will select X=1 and Y=[2,3]. Y will then be permuted into Y’=[2,3] and then
(after having backtracked one step) Y’=[3,2]. In other words, we generate [1,2,3], [1,3,2].

Second instance: We backtrack all the way back up the tree and select X=2 and Y=[1,3]. Y will then be
permuted into Y’=[1,3] and then Y’=[3,2]. In other words, we generate [2,1,3], [2,3,1].

43 Sorting – Naive Sort. . .

Third instance: Again, we backtrack all the way back up the tree and select X=3 and Y=[1,2]. We generate
[3,1,2], [3,2,1].

?- permutation([1,2,3],V).

V = [1,2,3] ;

V = [1,3,2] ;

V = [2,1,3] ;

V = [2,3,1] ;

V = [3,1,2] ;

V = [3,2,1] ;

no.

44 Permutations

V’=[3],[2],[3],[1],...

.

.
. . . .

X’’=3

Y’’=[]

del_one(X’’,Y’,Y’’)

X=1

Y=[2,3]

X=2

Y=[1,3]

X=3

Y=[1,2]

del_one(X,[1,2,3],Y)

perm([],V’’)

V’’=[]

X’=2

Y’=[3]

X’=3

Y’=[2]

Y’=[3]

X’=3X’=1

Y’=[1]

X’=1

Y’=[2]

X’=2

Y’=[1]

perm(Y,[X’|V’])

perm(Y’,[X’’|V’’])del_one(X’,Y,Y’)

perm([1,2,3],[X|V]) [1,2,3],[1,3,2],[2,1,3],[2,3,1],...

V=[2,3],[3,2],[1,2],[2,1],...

.

45 Sorting Strings

• Prolog strings are lists of ASCII codes.

12

• "Maggie" = [77,97,103,103,105,101]

aless(X,Y) :-

name(X,Xl), name(Y,Yl),

alessx(Xl,Yl).

alessx([],[|]).

alessx([X|],[Y|]) :- X < Y.

alessx([A|X],[A|Y]) :- alessx(X,Y).

46

Application: Mutant Animals

47 Mutant Animals

• From Prolog by Example, Coelho & Cotta.

• We’re given a set of words (French animals, in our case).

• Find pairs of words where the ending of the first one is the same as the beginning of the second.

• Combine the words, so as to form new “mutations”.

48 Mutant Animals. . .

1. Find two words, Y and Z.

2. Split the words into lists of characters. name(atom, list) does this.

3. Split Y into two sublists, Y1 and Y2.

4. See if Z can be split into two sublists, such that the prefix is the same as the suffix of Y (Y2).

5. If all went well, combine the prefix of Y (Y1) with the suffix of Z (Z2), to create the mutant list X.

6. Use name to combine the string of characters into a new atom.

49 Mutant Animals. . .

mutate(M) :-

animal(Y), animal(Z), Y \== Z,

name(Y,Ny), name(Z,Nz),

append(Y1,Y2,Ny), Y1 \==[],

append(Y2, Z2, Nz), Y2 \== [],

append(Y1,Nz,X), name(M,X).

animal(alligator). /* crocodile*/

animal(tortue). /* turtle */

animal(caribou). /* caribou */

animal(ours). /* bear */

animal(cheval). /* horse */

13

animal(vache). /* cow */

animal(lapin). /* rabbit */

50 Mutant Animals. . .

?- mutate(X).

X = alligatortue ; /* alligator+ tortue */

X = caribours ; /* caribou + ours */

X = chevalligator ; /* cheval + alligator*/

X = chevalapin ; /* cheval + lapin */

X = vacheval /* vache + cheval */

51

Summary

52 Prolog So Far. . .

• Lists are nested structures

• Each list node is an object

– with functor . (dot).

– whose first argument is the head of the list

– whose second argument is the tail of the list

• Lists can be split into head and tail using [H|T].

• Prolog strings are lists of ASCII codes.

• name(X,L) splits the atom X into the string L (or vice versa).

14

