CSc 372 — Comparative Programming Languages

24 : Prolog — Negation

Christian Collberg
Department of Computer Science
University of Arizona
collberg@gmail.com

Copyright © 2011 Christian Collberg

October 25, 2011

The Cut

2 Cuts & Negation

The cut (!) is is ued to affect Prolog’s backtracking. It can be used to
e reduce the search space (save time).
e tell Prolog that a goal is deterministic (has only one solution) (save space).
e construct a (weak form of) negation.

e construct if _then_else and once predicates.

3 Cuts & Negation

e The cut reduces the flexibility of clauses, and destroys their logical structure.
e Use cut as a last resort.
e Reordering clauses can sometimes achieve the desired effect, without the use of the cut.

e If you are convinced that you have to use a cut, try using if_then_else, once, or not instead.

The Cut

5 The Cut

The cut succeeds and commits Prolog to all the choices made since the parent goal was called.

Cut does two things:

commit: Don’t consider any later clauses for this goal.

prune: Throw away alternative solutions to the left of the cut.

6 The Cut
prune
Forget alternative
solutions
p:—ab,! cd.
p:—XY.
p :_ Z- k
commit:
Don't try these
7 The Cut
P ,
p:-q, .\r/
p:—-r. K
q:-s. q L r
q:-t \
. /X
S -t
8
The Boxtlow Model
9

The Boxflow Model

10 The Boxflow Model

: Save the current
Try to satsify

th I state in case we
¢ goa/ need to backtrack\
CALL —— —— SUCCEEI
No, the goal could Try to find
not be satisfied another solution

11 The Boxflow Model

a(X) := b(X), c(X).

a(Xx) = d(x).
a(X)
ALl T > SUCCEEI
C S C sl -
F R F R
[d(x)
c S
FAIL o0
F R
12 The Cut
a-bic ibmdnc |
ad S elsed |
caLL | ® SUCCEEI
b I c | 7
FAIL d o0
!
13
Classifying Cuts
14

Classifying Cuts

15 Classifying Cuts

grue No effect on logic, improves efficiency.

green Prune away

e irrelevant proofs

e proofs which are bound to fail
blue Prune away

e proofs a smart Prolog implementation would not try, but a dumb one might.

red Remove unwanted logical solutions.

16

Green Cuts

17 Green Cuts — Merge

Produce an ordered list of integers from two ordered lists of integers.

merge([X|Xs], [YlYs]l, [XIZs]) :-

X <Y, merge(Xs, [YIYs], Zs).
merge ([X|1Xs], [YIYs], [X,YIZs]) :-

X =Y, merge(Xs, Ys, Zs).
merge([X|Xs], [YlYs]l, [YIZs]) :-

X > Y, merge([X|Xs], Ys, Zs).

merge(Xs, [1, Xs).
merge([], Ys, Ys).

7- merge([1,4], [3,7], L).
L =1[1,3,4,7]

18 Green Cuts — Merge

m([2,3,5], [2,3], Xs)
/W ©

@ @
. \

2<2 m([35] [2,3],Xs") 2=2 m([3,5],[3],Xs") 2>2 m([2,3,5],[3],Xs")

19 Green Cuts

e Still, there is no way for Prolog to know that the clauses are mutually exclusive, unless we tell it so.
Therefore, Prolog must keep all choice-points (points to which Prolog might backtrack should there be
a failure) around, which is a waste of space.

e If we insert cuts after each test we will tell Prolog that the procedure is deterministic, i.e. that once
one test succeeds, there is no way any other test can succeed. Prolog therefore does not need to keep
any choice-points around.

20 Green Cuts — Merge

merge([XIXs], [YIYs], [Xl|Zs]) :-
X<y, !,
merge (Xs, [Y|Ys], Zs).

merge([XIXs], [YIYs]l, [X,YlZs]) :-
X=Y, !,
merge (Xs, Ys, Zs).

merge ([X|1Xs], [YIYs], [YIZs]) :-
x>y, !,
merge([X|Xs], Ys, Zs).

merge(Xs, [1, Xs) :- !.
merge([], Ys, Ys) :- !.

21 Green Cuts — Merge

m([2,3,5], [2,3], Xs)

@ - < (5)
. N (4)
2<2 | m(3.5,[2,3].Xs") 2:2“.\ m([3.51,[3].Xs") 2>2 | m(2,35][3].xs)

22

Red Cuts

23 Red Cuts — Abs

abs1(X, X) :- X >= 0.
abs1(X, Y) :- Y is -X.
?- abs1(-6, X).

X =6 ;
7- abs1(6, X).

X =6 ;

X =-6;
abs2(X, X) (- X >= 0, !.
abs2(X, Y) :- Y is -X.
7- abs2(-6, X).

X =6 ;

?7- abs2(6, X).
X =6 ;

24 Red Cuts — Abs

abs3(X, X) :- X >= 0.
abs3(X, Y) :- X< 0,
Y is —X.

?7- abs3(-6, X).
X =6 ;
no

7- abs3(6, X).
X =6 ;
no

25 Red Cuts — Intersection

Find the intersection of two lists A & B, i.e. all elements of A which are also in B.

intersect ([HITI, L, [HIU]) :-
member (H, L),
intersect(T, L, U).
intersect([_IT], L, U) :-
intersect(T, L, U).
intersect(_,_, [1).

26 Red Cuts — Intersection

?- intersect([3,2,1],[1,2], L).
L = [2,1] ;

= [2] ;

= [2] ;

= [1] ;

= [;

= [;

=0 ;

=0 ;

[N

27 Red Cuts — Intersection

L=[2,1]

i([3,2,1],[1,2],L)

m(3.[1.2)
/ " G
m@[2) L2 R~

@

i(0L[1.210) iC_D

L=l

m@,[1,2) i(L,2LL) (1)
/
i)
28 Red Cuts — Intersection
L=(2]

i(3,2,1],[1,2],L)

m(3,[1,2])
iC_
m(2,[1,2]) i([l],[l,2],l[_]) R\

succeed

m(1,[1,2]) i(0.[1,2],L) iC_
%
iC._

29 Red Cuts — Intersection

L=[2]
i([3,2,11,[1,2],L)

|muuau i

m(3,[1,2])

@
L= i([1].[2.2].L) i
m@[1,2) i(1][1.2].L0) F?\\\
o
(1) =[]
i(0.11,2],L) iC._m
[}
MLL2) i 2y -0
%
i

30 Red Cuts — Intersection

intersect ([HITI, L, [HIU]) :-
member (H, L),
intersect(T, L, U).
intersect([_IT], L, U) :-
intersect(T, L, U).
intersect(_,_, [1).

intersect1([HI|T], L, [HI|U]) :-
member (H, L), !,
intersect1(T, L, U).
intersect1([_|T], L, U) :-
!, intersecti(T, L, U).
intersect1(_,_,[1).

31 Red Cuts — Intersection

L=[2,1]
i([3,2,1],[1,2],L)
N T - 3
1) (2) |_=[2’1]\ ©
A i(12,1],[1,2],L)
m(3,[1,2]))

!

\7y

C@~®

L=[1]
m(2,[1,2]) 11,210

[succeed | 4><\£5‘\\\\4\($

mLiL2) g2
/
i

32

Blue Cuts

33 Blue Cuts

First clause indexing will select the right clause in constant time:

clause(x(5), ...) = ...
clause(y(5), ...) = ...
clause(x(5, f), ...) = ...
?- clause(x(C, £f),...).

First clause indexing will select the right clause in linear time:

clause(W, x(5), ...) :— ...
clause(W, y(5), ...) = ...
clause(W, x(5, £), ...) :— ...
?- clause(a, x(C, f),...).

34 Blue Cuts

capital(britain, london) .
capital (sweden, stockholm).
capital(nz, wellington).
7- capital(sweden, X).
X = stockholm
7- capital(X, stockholm).
X = sweden

capitall(britain, london) :- !.
capitall(sweden, stockholm) :- !.

capitall(nz, wellington) :- !.
7- capitall(sweden, X).

X = stockholm
?7- capitall(X, stockholm).

X = sweden

35
Once

36 Red Cuts — Once

member (H, [H|_]) .
member (I, [_IT]) :- member(I, T).

?- member(1,[1,1]), write(’x’), fail.
XX

meml (H, [H|_]) :- !'.

mem1 (I, [_IT]) :- memi(I, T).

?- meml1(1, [1,1]), write(’x’), fail.
X

once(G) :- call(G), !'.

onemem(X, L) :- once(mem(X, L)).

?- onemem(1,[1,1]), write(’x’),fail.
X

37 Red Cuts — Once

Red cuts prune away logical solutions. A clause with a red cut has no logical reading.

?7- member (X, [1,2]).

X=1;
X =2
no

7- onemem(X, [1,2]).
X=1;
no

38

Cut & Fail & IF-THEN-ELSE

39 Red Cuts — Abs

abs2(X, X) :- X >= 0, !.
abs2(X, Y) :- Y is -X.

10

if_then_else(P,Q,R) :-call(P),!,Q.
if_then_else(P,Q,R):-R.

abs4(X, Y) :- if_then_else(X >= 0,
Y=X, Y is -X).

7- abs4 (-6, X).
X =6 ;
no

?7- abs4(6, X).
X =6 ;
no

40 IF-THEN-ELSE

intersect([HI|T], L, [H|U]) :-
member(H, L), !, intersect(T, L, U).
intersect([_|T], L, U) :-
!, intersect(T, L, U).
intersect(_,_, [1).

IF H € L THEN
compute the inters. of T and L,
let H be in the resulting list.
ELSEIF the list \= [] THEN
let the resulting list be the
intersection of T and L.
ELSE
let the resulting list be [].
ENDIF

41 IF-THEN-ELSE

if_then_else(P,Q,R) :- call(P), !, Q.
if _then_else(P,Q,R) :- R.

intersect2([XIT], L, W) :-
if_then_else(member(X, L),
(intersect2(T, L, U), Ww=[X|Ul),
if then else(T \= [],
intersect2(T, L, W),
w=[1).

42

Negation

11

43

Negation

44 Open vs. Closed World

How should we handle negative information?
Open World Assumption:

If a clause P is not currently asserted then P is neither true nor false.

Closed World Assumption:

If a clause P is not currently asserted then the negation of P is currently asserted.

45 Open vs. Closed World

striker(dahlin).
striker (thern).
striker (andersson).

Open World Assumption:

Dahlin, Thern, and Andersson are strikers, but there may be others we don’t know about.

Closed World Assumption:

X is a striker if and only if X is one of Dahlin, Thern, and Andersson.

46 Negation in Prolog
e Prolog makes the closed world assumption.
e Anything that I do not know and cannot deduce is not true.
e Prolog’s version of negation is negation as failure.

e not(G) means that G is not satisfiable as a Prolog goal.

(1) not(G) :- call(@),!,fail.
(2) not(G).

?- not (member (5, [1,3,5])).
no
?- not(member (5, [1,3,4]1)).
yes

12

47 Prolog Execution — Not

e Some Prolog implementations don’t define not at all. We then have to give our own implementation:

(1) not(G) :- call(G),!,fail.
(2) not(G).

e Some implementations define not as

— the operator not;
— the operator \+;
— the predicate not (Goal).

gprolog uses \+.

48 Prolog Execution — Not

not(P) :— P, !, fail; true.

caLL | not(P) SUCCEEIL

L

true
FAIL REDO

49 Negation Example — Disjoint
Do the lists X & Y not have any elements in common?
disjoint (X, Y) :-

not (member(Z, X),
member (Z, Y)).

7- disjoint([1,2],[3,2,4]).
no

7- disjoint([1,2],[3,7,4]).
yes

50 Prolog Negation Problems

man(john). man(adam).
woman (sue) . woman(eve) .
married(adam, eve).

married(X) :- married(X, .).

13

married(X) :- married(_, X).
human(X) :- man(X).
human(X) :- woman(X).

% Who is not married?
?- not married(X).
false

% Who is not dead?
?- not dead(X).
true

51 Prolog Negation Problems
man(john). man(adam) .

woman (sue) . woman(eve) .
married(adam, eve).

married(X) :- married(X,).
married(X) :- married(_, X).
human(X) :- man(X).

human (X) :- woman(X).

% Who is not married?

?- human(X), not married(X).
X = john ; X = sue

% Who is not dead?

?- man(X), not dead(X).
X = john ; X = adam ;

52 Prolog Negation Problems

e If G terminates then so does not G.

e If G does not terminate then not G may or may not terminate.
married(abraham, sarah).
married(X, Y) :- married(Y, X).

?- not married(abraham,sarah).
false

?- not married(sarah,abraham).
non-termination

53 Open World Assumption

We can program the open world assumption:

e A query is either true, false, or unknown.

14

e A false facts F has to be stated explicitly, using false (F).

e If we can’t prove that a statement is true or false, it’s unknown.

% Philip is Charles’ father.
father(philip, charles).

% Charles has no children.
false(father(charles, X)).

54 Open World Assumption
prove(P) :- call(P), write(’** true’), nl,!.
prove(P) :- false(P), write(’** false’), nl,!.

prove(P) :-
not(P), not(false(P)),
write(’*** unknown’), nl, !.

55 Open World Assumption

father(philip, charles).
false(father(charles, X)).

% Is Philip the father of ann?
?7- prove(father(philip, ann)).
** unknown

% Does Philip have any children?
7- prove(father(philip, X)).

** true

X = charles

% Is Charles the father of Mary?

?7- prove(father(charles, mary)).
** false

15

