
CSc 372 — Comparative Programming Languages

28 : Ruby — Classes

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

November 1, 2011

1 Inheritance

• Let’s start with this class Bird, with two instance variables name and age:

class Bird

def initialize(name,age)

@name = name

@age = age

end

def to_s

"#{@name} : #{@age}"

end

end

puts Bird.new("donald",45)

2 Inheritance

• We can can create a new class, Duck, as an extension of Bird:

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

end

puts Duck.new("huey",8,"cartoon")

3 Overriding Methods

• Now, the to s doesn’t print the new attribute kind — but we can override it with a new definition.

1



• Note that both to s methods now exist, one in Bird and one in Duck.

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

def to_s

"#{@name} : #{@age} : #{@kind}"

end

end

4 Overriding methods

• We can call the method in the super class using the super keyword — it sends the same message (with
the same arguments) to the parent class.

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

def to_s

super + " : #{@kind}"

end

end

5 Defining getters

• We can define getters by hand, like this:

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

def name

@name

end

def age

@age

end

end

d = Duck.new("huey",8,"cartoon")

puts d.name()

6 Defining getters

• The attr reader method, does this for us.

2



• attr reader is actually a method (!) defined in module Module that generates these methods auto-
matically

class Duck

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

attr_reader :name, :age

end

d = Duck.new("huey",8,"cartoon")

puts d.name()

7 Defining setters

• We can define setters too, by creating a method "attr=" for an attribute attr

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

attr_reader :name, :age

def age=(new_age)

@age = new_age

end

end

d = Duck.new("huey",8,"cartoon")

d.age = 9

8 Defining setters

• Or, we can use attr writer to generate the setters automatically:

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

attr_reader :name, :age

attr_writer :age

end

d = Duck.new("huey",8,"cartoon")

d.age = d.age + 1

d.age += 1

puts d

9 Class variables

• Class variables start with @@. They should be initialized inside the class.

3



class Duck < Bird

@@number = 0

def initialize(name,age,kind)

@name = namel @age = age; @kind = kind

@@number += 1

@number = @@number

end

attr_reader :name, :age

attr_writer :age

def to_s

super + ":#{@kind}[bird ##{@number}:of #{@@number}]"

end

end

10 Defining class methods

• Class (static) methods are defined by prefixing the name with the classname:

class Bird

@@flock = []

def initialize(name,age)

@name = name; @age = age

@@flock << self

end

def Bird.flock

return @@flock

end

end

Bird.new("huey",8); Bird.new("dewey",8); ...

puts Bird.flock

11 Access control

• public, protected, private mean roughly the same as in Java.

• Of course, access control is dynamic — everything happens at runtime. There are no errors until you
try to execute a method you don’t have access to.

class Bird

def roast; end

def steam; end

def fry; end

def deepfry; end

public :roast, :steam

protected :fry

private :deepfry

end

12 Freezing objects

• You can freeze an object to prevent someone from modifying it.

4



class Bird

def initialize(name,age)

@name = name; @age = age

end

attr_writer :age

end

h = Bird.new("huey",8)

h.age = 9

h.freeze

h.age = 10

puts h

13 Freezing classes

• As we’ve seen, class definitions are executable code, they essentially build the class at runtime, as
they’re encountered.

• So, since classes are objects, too, it makes sense that we can freeze them:

Bird.freeze

class Bird

def newmethod

end

end

14 Exercise: Factorial

• Write the factorial program in Ruby.

• Note that there’s no need to put the function in a class.

• Extend the program to take input from the command line, i.e. if your file is called fact, you should
be able to do

> fact 10

3628800

HINT: ARGV holds the input arguments, the method to i converts from string to integer.

15 Exercise: Reading

• Write a program which reads a string from the user and prints true if its y or Y, false if it’s n or N
or an empty line, and loops otherwise. Ignore leading or trailing blanks. Examples:

> ./yes

Are you sure? [y/n]: y

true

> ./yes

Are you sure? [y/n]: n

false

5



> ./yes

Are you sure? [y/n]: asdfsdf

Are you sure? [y/n]: dsfsdfs

Are you sure? [y/n]:

false

HINT: gets() reads a string from the command line.

16 Exercise: Complex Class

• Write a class Complex that implements complex numbers. Given these statements

a = Complex.new(10,20)

puts a

b = a.add(Complex.new(5,6))

puts b

the program should print

> ruby Complex.rb

10+i20

15+i26

HINT: Use string interpolation in to s.

17 Exercise: Operator overloading

• Extend Complex from the previous problem so that add can be called using the + operator instead.
Given these statements

a = Complex.new(10,20)

b = Complex.new(5,6)

c = a + b

puts c

the program should print

> ruby Complex.rb

15+i26

HINT: An operator is defined like this:

def * (a)

...

end

6



18 Exercise: Complex Arrays

• Write a class ComplexArray to implement arrays of complex numbers. Given these statements:

a = Complex.new(10,20)

b = Complex.new(5,6)

x1 = ComplexArray.new([a,b])

puts x1

the program should print

> ruby Complex.rb

[10+i20,5+i6]

19 Exercise: Polymorphic functions

• Extend Complex by overriding the add method so that it now can take both a Complex number and
an integer as argument. These statements

a = Complex.new(10,20)

puts a.add(Complex.new(5,6))

puts a.add(5)

puts a + 5

should produce

> ruby Complex.rb

15+i26

15+i20

15+i20

HINT: To do the type test you use: b.kind of?(Fixnum).

20 Readings

• Read Chapter 3, page 25–41, in Programming Ruby — The Pragmatic Programmers Guide, by Dave
Thomas.

• Read page 394–395, in Programming Ruby, about freezing objects.

21 The three of us are twins!

7


