
CSc 372 — Comparative Programming Languages

29 : Ruby — Blocks

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

November 1, 2011

1 Blocks

• Let’s write a simple for loop to search through an array looking for a particular value:

$flock = ["huey","dewey","louie"]

def isDuck?(name)

for i in 0...$flock.length

if $flock[i] == name then

return true

end

end

return false

end

puts isDuck?("dewey"), isDuck?("donald")

2 Iterators

• Ruby’s iterators are an easier way to do this.

• The Array class implements a method find that iterates through the array.

def isDuck?(name)

$flock.find do |x|

x == name

end

end

puts isDuck?("dewey")

puts isDuck?("donald")

1

3 Yield

• A block is enclosed within {} or do...end. Arguments to the block (there can be more than one) are
given within |...|.

• A block is passed to a method by giving it after the list of “normal” parameters.

• The method invokes the block by using yield.

• yield can take an argument which the method passed back to the block.

4 Yield. . .

def triplets()

yield "huey"

yield "dewey"

yield "louie"

end

triplets() {|d| puts d}

triplets() do |d|

puts d

end

5 Factorial

• Here’s the factorial function, as an iterator.

def fac(n)

f = 1

for i in 1..n

f *= i

yield f

end

end

fac(5) {|f| puts f}

6 Passing arguments

• yield can pass more than one value to the block.

def fac(n)

f = 1

for i in 1..n

f *= i

yield i,f

end

end

fac(5) do |i,x|

2

puts "#{i}! = #{x}"

end

7 Nesting iterators

• Iterators can be nested.

fac(3) do |i,x|

fac(3) do |j,y|

puts "#{i}! * #{j}! = #{x*y}"

end

end

8 Scope

• A local variable which is active when the block is started up, can be accessed (and modified) within
the block.

def sumfac(n)

y = 0

fac(n) do |i,x|

y = y + x

end

return y

end

puts sumfac(5)

9 Implementing Array#find

• We can implement our own find method:

def find(arr)

for i in 0..arr.length

if yield arr[i] then return true end

end

return false

end

puts find($flock) {|x| x=="dewey"}

puts find($flock) {|x| x=="donald"}

10 Array#collect

• collect applies the block to every element of an array, creating a new array. This is similar to Haskell’s
map.

$flock = ["huey","dewey","louie"]

$flock.each {|x| puts x}

3

puts $flock.collect {|x| x.length}

puts $flock.collect do |x|

"junior woodchuck, General " + x

end

11 Array#inject

• inject(init) is similar to Haskell’s foldl.

• inject() without an argument is like Haskell’s foldl1, i.e. it uses the first element of the array as
the starting value.

x = $flock.inject("") do |elmt,total|

total = elmt + " " + total

end

puts x

x = $flock.inject() do |elmt,total|

total = elmt + " " + total

end

puts x

12 Exercise — MyHash

• Let’s write our own version of Ruby’s Hash class, called MyHash.

• The hash table should be implemented as an array of buckets [0..size-1], where each bucket i is an
array of [key,value] pairs and such as

i = key.hash mod size

• First, declare the class and add a constructor.

• The constructor should take one argument, the size (number of buckets). It should create the buckets
(an array of nil values) and set an instance variable @size to the number of buckets.

• HINT: Array.new(size=...,obj=...) creates an array of size size, with each value being obj.

13 Exercise — MyHash — put

• Now implement the put(key,value) method.

• The algorithms is as follows:

1. Compute the bucket number for the key, i.e. key.hash() mod the size of the bucket array.

2. Check of the bucket is empty (nil). If so, set it to be an empty list.

3. Look through the table to see if there’s already an element in the bucket with the right key. If
so, change the element to the new value. Otherwise, add the [key,value] pair to the end of the
bucket.

• HINT: array.map! {|item| block } invokes the block once for each element of self, replacing the
element with the value returned by block.

4

14 Exercise — MyHash — get

• Now implement the get(key) method.

• The algorithms is as follows:

1. Compute the bucket number for the key.

2. Check of the bucket is empty (nil). If it is, return nil.

3. Look through the table to see if there’s an element in the bucket with the right key. If so, return
the value. Otherwise, return nil.

15 Exercise — MyHash. . .

This code

h = MyHash.new(10)

h.put("hey","there")

h.put("yo","dude")

puts h.get("hey")

puts h.get("yo")

h.put("hey","baby")

puts h.get("yo")

puts h.get("hey")

should generate this output:

there

dude

dude

baby

16 Exercise — MyHash — each

• Now implement the each method which yields each element at a time.

• Use each to implement keys() and values() methods that yields each element at a time.

• Extend keys() such that it can yield each element at a time (if you pass it a block) or returns an array
of keys if you don’t.

• HINT: The method block given? returns true if you’ve passed a block to the method.

• Add a method to s() that return the key-value pairs of the hashtable as a string.

17 Exercise — MyHash — Example. . .

puts h.to_s()

should print

hey => baby

yo => dude

5

18 Exercise — MyHash — Example. . .

h.keys() {|x| puts x}

puts "-------------------------------------"

s = h.keys()

puts s

should print

hey

yo

hey

yo

19 Exercise — MyHash — Example. . .

• Extend the class so that in addition to using put and get you can also use []= and []. Example:

h["banana"] = "fruit"

puts h["banana"]

should print

fruit

• HINT: alias :newmethod :oldmethod makes a new method newmethod that simply calls oldmethod.

20 Exam Problem I — 372 Fall 2008

Let’s implement methods map, filter, and foldr, corresponding to their Haskell namesakes, but this time
in Ruby! Here is the class definition:

class Array

def Array.map(a)

...

end

def Array.filter(a)

...

end

def Array.foldr(a,z)

...

end

end

21 Exam Problem I — 372 Fall 2008

Each method is passed an array a as input and returns a new array as output. In Haskell these higher-order
functions would also be passed a function as argument, but here in Ruby they’re instead passed a block.
The foldr method also has an argument z, the starting value.

6

22 Exam Problem I(a) — 372 Fall 2008

Write the Array.map method. This example

a = Array.map([1,2,3]) do |x|

x+1

end

puts a

should print out

2

3

4

23 Exam Problem I(b) — 372 Fall 2008

Write the Array.filter method. This example

a = Array.filter([1,2,3,4,5]) do |x|

x % 2 == 0

end

puts a

should print out

2

4

24 Exam Problem I(c) — 372 Fall 2008

Write the Array.foldr method. These examples

puts Array.foldr([1,2,3,4,5],0) do |x,z|

x+z

end

puts Array.foldr([1,2,3,4,5],0) do |x,z|

x-z

end

puts Array.foldr(["aaa","bbb","ccc"],"") do |x,z|

x+z

end

puts a

should print out

15

3

aaabbbccc

7

25 Readings

• Read Chapter 4, page 49–55, in Programming Ruby — The Pragmatic Programmers Guide, by Dave
Thomas.

• Here’s the documentation for the Array class: http://www.ruby-doc.org/core/classes/Array.

html

26 Yum!

8

