
CSc 372 — Comparative Programming Languages

32 : Ruby — Types

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

November 15, 2011

1 Compile-time type-checking

• Some call it static checking, type safety, strict type-checking, strong typing,. . .

• It does have some advantages:

1. You catch certain errors at compile time which you now can be sure won’t occur at run-time:
arithmetic between the wrong types, wrong number of arguments to functions, etc.

2. Simple errors that appear during code refactoring are easily caught and fixed.

3. The more the compiler knows about your code, the better optimized code it can produce.

4. Types serve as comments to the programmer, reminding him/her of what types of arguments a
method was designed to take.

2 Compile-time type-checking. . .

• But:

1. Even Java has many errors which cannot be caught until run-time, such as ClassCastException
and ArrayBoundsException.

2. Sometimes you need more flexibility, and it can be hard to work around a strict typechecker.

3 Run-time type-checking

• On the one hand, on the other hand:

1. Less static type-checking may make programs faster to write, but it may also make them harder
to maintain.

2. A program is written once, but read and re-written many times — types can help someone
unfamliar with the code to understand it quicker.

1



4 Ruby Typing

• The type of an object is defined by what it can do.

• If an object walks like a duck, and talks like a duck, let’s treat it like it’s a duck!

• We call this Duck Typing.

5 Ruby Typing

• Here’s a simple class that logs data by appending it to a file:

class Logger

def initialize()

@f = File.open("logfile", "w")

end

def log(message)

@f << message

end

end

l = Logger.new

l.log("Ducks ahoy!\n")

6 Ruby Typing. . .

• Or a string, which also knows the << message.

• Notice that the only change we had to make was to the statement that creates the f-object.

class Logger

def initialize()

@f = ""

end

def log(message)

@f << message

end

end

7 Ruby Typing. . .

• Or an array, which also responds to the << message:

class Logger

def initialize()

@f = []

end

def log(message)

@f << message

2



end

end

l = Logger.new

l.log("Ducks ahoy!\n")

8 Ruby Type “Checking”

• If you absolutely want to check types, you should really check whether an object responds to a particular
message or not:

class Logger

def initialize()

@f = {}

end

def log(message)

unless @f.respond_to?(:<<)

fail TypeError.new("log needs <<")

end

@f << message

end

end

9 Ruby Type “Checking”. . .

• Of course, all we’re checking here is that there’s a method by the name of <<, we know nothing about
what arguments it takes, what it does to those arguments, etc, so this is pretty weak checking.

10 Ducks vs. Dragons

class Duck

def quack() puts "Quack!" end

def walk() puts "Do the duck walk!" end

end

def playInMyPond!(someSortOfDuck)

someSortOfDuck.quack()

someSortOfDuck.walk()

end

donald = Duck.new()

playInMyPond!(donald)

11 Ducks vs. Dragons

class Dragon

def quack() puts "Impersonate a Duck!" end

def walk() puts "Breath fire!" end

end

3



def playInMyPond!(someSortOfDuck)

someSortOfDuck.quack()

someSortOfDuck.walk()

end

dragon = Dragon.new()

playInMyPond!(dragon)

12 Cowboys vs. Squares — Ruby

class Cowboy

def move() end

def draw() end

end

class Square

def move() end

def draw() end

end

johnWayne = Cowboy.new()

smallSquare = Square.new()

johnWayne = smallSquare

13 Cowboys vs. Squares — Java

class Cowboy {

void move() {}

void draw() {}

}

class Square {

void move() {}

void draw() {}

}

class Java {

public static void main(String[] args) {

Cowboy johnWayne = new Cowboy();

Square smallSquare = new Square();

johnWayne = smallSquare;

}

}

14 Readings

• Read Chapter 23, page 365–377, in Programming Ruby — The Pragmatic Programmers Guide, by
Dave Thomas.

4



15 Well-Travelled Ducks

From http://www.dailymail.co.uk/pages/live/articles/news/news.html?in_article_id=464768

5


